scholarly journals A linear complementarity based characterization of the weighted independence number and the independent domination number in graphs

2018 ◽  
Vol 244 ◽  
pp. 155-169
Author(s):  
Parthe Pandit ◽  
Ankur A. Kulkarni
2017 ◽  
Vol 4 (8) ◽  
pp. 25-37 ◽  
Author(s):  
Doug Chatham

Abstract Given a (symmetrically-moving) piece from a chesslike game, such as shogi, and an n×n board, we can form a graph with a vertex for each square and an edge between two vertices if the piece can move from one vertex to the other. We consider two pieces from shogi: the dragon king, which moves like a rook and king from chess, and the dragon horse, which moves like a bishop and rook from chess. We show that the independence number for the dragon kings graph equals the independence number for the queens graph. We show that the (independent) domination number of the dragon kings graph is n − 2 for 4 ≤ n ≤ 6 and n − 3 for n ≥ 7. For the dragon horses graph, we show that the independence number is 2n − 3 for n ≥ 5, the domination number is at most n−1 for n ≥ 4, and the independent domination number is at most n for n ≥ 5.


2011 ◽  
Vol 22 (05) ◽  
pp. 1187-1195 ◽  
Author(s):  
AYSUN AYTAC ◽  
TUFAN TURACI

For a vertex v of a graph G = (V,E), the independent domination number (also called the lower independence number) iv(G) of G relative to v is the minimum cardinality of a maximal independent set in G that contains v. The average lower independence number of G is [Formula: see text]. In this paper, this parameter is defined and examined, also the average lower independence number of gear graphs is considered. Then, an algorithm for the average lower independence number of any graph is offered.


10.37236/847 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Odile Favaron

A dominating set $S$ of a graph $G$ is a global (strong) defensive alliance if for every vertex $v\in S$, the number of neighbors $v$ has in $S$ plus one is at least (greater than) the number of neighbors it has in $V\setminus S$. The dominating set $S$ is a global (strong) offensive alliance if for every vertex $v\in V\setminus S$, the number of neighbors $v$ has in $S$ is at least (greater than) the number of neighbors it has in $V\setminus S$ plus one. The minimum cardinality of a global defensive (strong defensive, offensive, strong offensive) alliance is denoted by $\gamma_a(G)$ ($\gamma_{\hat a}(G)$, $\gamma_o(G)$, $\gamma_{\hat o}(G))$. We compare each of the four parameters $\gamma_a, \gamma_{\hat a}, \gamma_o, \gamma_{\hat o}$ to the independent domination number $i$. We show that $i(G)\le \gamma ^2_a(G)-\gamma_a(G)+1$ and $i(G)\le \gamma_{\hat{a}}^2(G)-2\gamma_{\hat{a}}(G)+2$ for every graph; $i(G)\le \gamma ^2_a(G)/4 +\gamma_a(G)$ and $i(G)\le \gamma_{\hat{a}}^2(G)/4 +\gamma_{\hat{a}}(G)/2$ for every bipartite graph; $i(G)\le 2\gamma_a(G)-1$ and $i(G)=3\gamma_{\hat{a}}(G)/2 -1$ for every tree and describe the extremal graphs; and that $\gamma_o(T)\le 2i(T)-1$ and $i(T)\le \gamma_{\hat o}(T)-1$ for every tree. We use a lemma stating that $\beta(T)+2i(T)\ge n+1$ in every tree $T$ of order $n$ and independence number $\beta(T)$.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1411
Author(s):  
Magda Dettlaff ◽  
Magdalena Lemańska ◽  
Jerzy Topp

The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|≥r. The common independence number αc(G) of G is the limit of symmetry in G with respect to the fact that each vertex of G belongs to an independent set of cardinality αc(G) in G, and there are vertices in G that do not belong to any larger independent set in G. For any graph G, the relations between above parameters are given by the chain of inequalities i(G)≤αc(G)≤α(G). In this paper, we characterize the trees T for which i(T)=αc(T), and the block graphs G for which αc(G)=α(G).


2021 ◽  
Vol 41 (1) ◽  
pp. 39
Author(s):  
Hamideh Aram ◽  
Nasrin Dehgardi ◽  
Seyed Mahmoud Sheikholeslami ◽  
Mina Valinavaz ◽  
Lutz Volkmann

2017 ◽  
Vol 09 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Nacéra Meddah ◽  
Mustapha Chellali

A Roman dominating function (RDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] of [Formula: see text] for which [Formula: see text]. The weight of a RDF is the sum [Formula: see text], and the minimum weight of a RDF [Formula: see text] is the Roman domination number [Formula: see text]. A subset [Formula: see text] of [Formula: see text] is a [Formula: see text]-independent set of [Formula: see text] if every vertex of [Formula: see text] has at most one neighbor in [Formula: see text] The maximum cardinality of a [Formula: see text]-independent set of [Formula: see text] is the [Formula: see text]-independence number [Formula: see text] Both parameters are incomparable in general, however, we show that if [Formula: see text] is a tree, then [Formula: see text]. Moreover, all extremal trees attaining equality are characterized.


2011 ◽  
Vol 28 (3) ◽  
pp. 315-332
Author(s):  
Ermelinda DeLaViña ◽  
Craig E. Larson ◽  
Ryan Pepper ◽  
Bill Waller
Keyword(s):  

2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


Sign in / Sign up

Export Citation Format

Share Document