scholarly journals Problems of the integrative assessment of the competitive advantages of the economic cross model of closing the nuclear fuel cycle

2020 ◽  
Vol 8 (3) ◽  
pp. 26-30
Author(s):  
Dmitriy Timohin ◽  
Lyubov' Degteva ◽  
Aleksandr Panin ◽  
Evgeniy Strelka

In the article, the authors present a model for making a decision on the introduction of a competitive innovative proposal into the nuclear fuel cycle. The factors of saving on the resource potential of nuclear fuel in the framework of creating a two-component atomic energy are considered. A graphic interpretation of the choice of the technology for closing the fuel cycle in terms of the volume of processing is given. The authors examined the dynamics of the needs of the global economy in energy resources for the period 1865-2015. and market statistics on electricity prices in Russia and the world in 2011-2019. and forecast up to 2024. A mathematical model for determining the optimal ratio between the expected economic result from the development of two-component energy and the costs of its creation is considered. The application of this model gives an economic result, which can be calculated as a synergistic effect of investment for all sectors of the economy over a certain period. The authors calculated the influence of the social factor on the economic result using the formula. Reflected in the article is a nuclear power model formed on the basis of the "economic cross" methodology and a closed nuclear fuel cycle model formed on the basis of the "economic cross" model.

2019 ◽  
Vol 5 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Andrey A. Andrianov ◽  
Ilya S. Kuptsov ◽  
Tatyana A. Osipova ◽  
Olga N. Andrianova ◽  
Tatyana V. Utyanskaya

The article presents a description and some illustrative results of the application of two optimization models for a two-component nuclear energy system consisting of thermal and fast reactors in a closed nuclear fuel cycle. These models correspond to two possible options of developing Russian nuclear energy system, which are discussed in the expert community: (1) thermal and fast reactors utilizing uranium and mixed oxide fuel, (2) thermal reactors utilizing uranium oxide fuel and fast reactors utilizing mixed nitride uranium-plutonium fuel. The optimization models elaborated using the IAEA MESSAGE energy planning tool make it possible not only to optimize the nuclear energy system structure according to the economic criterion, taking into account resource and infrastructural constraints, but also to be used as a basis for developing multi-objective, stochastic and robust optimization models of a two-component nuclear energy system. These models were elaborated in full compliance with the recommendations of the IAEA’s PESS and INPRO sections, regarding the specification of nuclear energy systems in MESSAGE. The study is based on publications of experts from NRC “Kurchatov Institute”, JSC “SSC RF-IPPE”, ITCP “Proryv”, JSC “NIKIET”. The presented results demonstrate the characteristic structural features of a two-component nuclear energy system for conservative assumptions in order to illustrate the capabilities of the developed optimization models. Consideration is also given to the economic feasibility of a technologically diversified nuclear energy structure providing the possibility of forming on its base a robust system in the future. It has been demonstrated that given the current uncertainties in the costs of nuclear fuel cycle services and reactor technologies, it is impossible at the moment to make a reasonable conclusion regarding the greatest attractiveness of a particular option in terms of the economic performance.


2021 ◽  
Vol 7 (3) ◽  
pp. 165-172
Author(s):  
Vladimir I. Usanov ◽  
Stepan A. Kvyatkovskiy ◽  
Andrey A. Andrianov ◽  
Ilya S. Kuptsov

The paper presents the results from a multi-criteria comparative evaluation of potential deployment scenarios for Russian nuclear power with thermal and sodium-cooled fast reactors in a closed nuclear fuel cycle (the so-called two-component nuclear energy system). The comparison and the ranking were performed taking into account the recommendations and using the IAEA/INPRO software tools for comparative evaluation of nuclear energy systems, including tools for sensitivity/uncertainty analysis with respect to weighting factors. Ten potential Russian nuclear power deployment scenarios with different shares of thermal and sodium-cooled fast reactors were considered, including options involving the use of MOX fuel in VVER reactors. Eight key indicators were used, estimated as of 2100 and structured into a three-level objectives tree. The comparative evaluation and the ranking were carried out based on the multi-attribute value theory. The model for assessing the key indicators was developed using the IAEA/INPRO MESSAGE-NES energy system planning software tool. The information base for the study was formed by publications of experts from JSC SSC RF-IPPE, NRC Kurchatov Institute and NRNU MEPhI. The presented results show that it is possible to enhance significantly the sustainability of the Russian nuclear energy system, when considering multiple performance indicators, through the intensive deployment of sodium-cooled fast reactors and the transition to a closed nuclear fuel cycle. Tasks have been outlined for the follow-up studies to make it possible to obtain more rigorous conclusions regarding the preferred options for the evolution of a two-component nuclear energy system.


2018 ◽  
Vol 2018 (3) ◽  
pp. 100-112 ◽  
Author(s):  
Andrey Alekseevich Andrianov ◽  
Ilya Sergeevich Kuptsov ◽  
Tatiana Andreevna Osipova ◽  
Olga Nikolaevna Andrianova ◽  
Tatyana Vladimirovna Utyanskaya

Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Przemysław Stanisz ◽  
Jerzy Cetnar ◽  
Grażyna Domańska

Abstract The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR) was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System) and LEADER (Lead-cooled European Advanced Demonstration Reactor) projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA) are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs), and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB) code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.


Author(s):  
Marco Ciotti ◽  
Jorge L. Manzano ◽  
Vladimir Kuznetsov ◽  
Galina Fesenko ◽  
Luisa Ferroni ◽  
...  

Financial aspects, environmental concerns and non-favorable public opinion are strongly conditioning the deployment of new Nuclear Energy Systems across Europe. Nevertheless, new possibilities are emerging to render competitive electricity from Nuclear Power Plants (NPPs) owing to two factors: the first one, which is the fast growth of High Voltage lines interconnecting the European countries’ national electrical grids, this process being triggered by huge increase of the installed intermittent renewable electricity sources (Wind and PV); and the second one, determined by the carbon-free constraints imposed on the base load electricity generation. The countries that due to public opinion pressure can’t build new NPPs on their territory may find it profitable to produce base load nuclear electricity abroad, even at long distances, in order to comply with the European dispositions on the limitation of the CO2 emissions. In this study the benefits from operating at multinational level with the deployment of a fleet of PWRs and subsequently, at a proper time, the one of Lead Fast Reactors (LFRs) are analyzed. The analysis performed involves Italy (a country with a current moratorium on nuclear power on spite that its biggest utility operates NPPs abroad), and the countries from South East and Central East Europe potentially looking for introduction or expansion of their nuclear power programmes. According to the predicted evolution of their Gross Domestic Product (GDP) a forecast of the electricity consumption evolution for the present century is derived with the assumption that a certain fraction of it will be covered by nuclear electricity. In this context, evaluated are material balances for the front and the back end of nuclear fuel cycle associated with the installed nuclear capacity. A key element of the analysis is the particular type of LFR assumed in the scenario, characterized by having a fuel cycle where only fission products and the reprocessing losses are sent for disposition and natural or depleted uranium is added to fuel in each reprocessing cycle. Such LFR could be referred to as “adiabatic reactor”. Owing to introduction of such reactors a substantive reduction in uranium consumption and final disposal requirements can be achieved. Finally, the impacts of the LFR and the economy of scale in nuclear fuel cycle on the Levelized Cost of Electricity (LCOE) are being evaluated, for scaling up from a national to a multinational dimension, illustrating the benefits potentially achievable through cooperation among countries.


Sign in / Sign up

Export Citation Format

Share Document