Life cycle emissions from a Bus Rapid Transit system and comparison with other modes of passenger transportation

2016 ◽  
Vol 6 (3) ◽  
pp. 123-134 ◽  
Author(s):  
Yohen Cuéllar ◽  
Rodrigo Buitrago Tello ◽  
Luis Carlos Belalcazar Ceronn
2021 ◽  
Vol 13 (8) ◽  
pp. 4437
Author(s):  
Sitti Asmah Hassan ◽  
Intan Nurfauzirah Shafiqah Hamzani ◽  
Abd. Ramzi Sabli ◽  
Nur Sabahiah Abdul Sukor

Bus rapid transit (BRT) is one of the strategies to promote improvements in urban mobility. In this study, BRT scenarios, which integrate exclusive bus lanes and bus priority signal control in mixed traffic scenarios, were modelled using a VISSIM microsimulation. Three scenarios of BRT were modelled to represent 16:84, 38:62 and 54:46 modal splits between public transport and private vehicles. It was found that Scenario 4 (the 54:46 scenario) offers better benefits in terms of delay time saving and economic benefits. In general, it was found that the BRT system enhances the functioning of the transport system and provides people with faster and better mobility facilities, resulting in attractive social and economic benefits, especially on a higher modal split of public transport. It is regarded as one strategy to alleviate traffic congestion and reduce dependency on private vehicles. The finding of this study provides an insight on the effective concept of the BRT system, which may promote the dissemination of an urban mobility solution in the city. The results can help policymakers and local authorities in the management of a transport network in order to ensure reliable and sustainable transport.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Wu Lan ◽  
Chen Xuewu ◽  
Lu Tao

Different configurations of Bus Rapid Transit (BRT) system may cause different additional riderships. In this paper, in terms of network traffic equilibrium assignment principle, the additional riderships estimation model based on Variational Inequality (VI) model is presented. The bus frequency is related to variables including the travel time, the residence time in terminals, and the dwelling time at the stops. The additional riderships are translated into network additional traffic flow firstly. Given the bus frequency, VI model can be turned into Stochastic User Equilibrium (SUE) model to calculate the other variables. The similarity diagonalization method is used to calculate the elastic bus frequency and finally the network additional traffic flow can be computed. The additional riderships under different configurations of BRT system are compared in the numerical test. The results show that the additional riderships under different configurations have large differences and occupy a high percentage of the total ridership.


2004 ◽  
Vol 24 (5) ◽  
pp. 587-610 ◽  
Author(s):  
DANIEL A. RODRÍGUEZ* * ◽  
FELIPE TARGA

2015 ◽  
Vol 2531 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Anjali Mahendra ◽  
Lakshmi Rajagopalan

Sustainable transportation interventions affect public health in three ways: through ( a) reduced pollution emissions, ( b) increased physical activity, and ( c) reduced road accidents. The public health benefits that can be achieved through investment in sustainable transport thus are substantial. This study sought to estimate benefits from sustainable transport intervention in the city of Indore in the Indian state of Madhya Pradesh through the construction of a bus rapid transit (BRT) system along a main traffic corridor. The benefits were estimated with a health impact assessment methodology developed on the basis of modal shift and vehicle kilometers traveled. With the introduction of a BRT system, the study found that about 14 lives could be saved per year as a result of an increase in walking or cycling, a decrease in private vehicle use, and a reduction in air pollution exposure. Also, more than 96 deaths could be prevented from 2013 to 2017 along the BRT corridor when compared with current trends in motorization with no BRT system investment. The reduction in emissions between a business-as-usual scenario and post-BRT scenario was 11%. The mortality risk from exposure to particulate matter of up to 2.5 mm in size could be reduced by 1.1%. Even given the limitations with respect to the data and the assumptions made in the study, the results were significant enough to recommend that public health aspects be considered in the formulation of transport policy and in the maximization of benefits.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 625
Author(s):  
Cheng ◽  
Zhao ◽  
Zhang

The purpose of this study is to create a bi-level programming model for the optimal bus stop spacing of a bus rapid transit (BRT) system, to ensure simultaneous coordination and consider the interests of bus companies and passengers. The top-level model attempts to optimize and determine optimal bus stop spacing to minimize the equivalent costs, including wait, in-vehicle, walk, and operator costs, while the bottom-level model reveals the relation between the locations of stops and spatial service coverage to attract an increasing number of passengers. A case study of Chengdu, by making use of a genetic algorithm, is presented to highlight the validity and practicability of the proposed model and analyze the sensitivity of the coverage coefficient, headway, and speed with different spacing between bus stops.


Sign in / Sign up

Export Citation Format

Share Document