mobility solution
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 10 (8) ◽  
pp. 571
Author(s):  
Sumit Mishra ◽  
Nikhil Singh ◽  
Devanjan Bhattacharya

Short distance travel and commute being inevitable, safe route planning in pandemics for micro-mobility, i.e., cycling and walking, is extremely important for the safety of oneself and others. Hence, we propose an application-based solution using COVID-19 occurrence data and a multi-criteria route planning technique for cyclists and pedestrians. This study aims at objectively determining the routes based on various criteria on COVID-19 safety of a given route while keeping the user away from potential COVID-19 transmission spots. The vulnerable spots include places such as a hospital or medical zones, contained residential areas, and roads with a high connectivity and influx of people. The proposed algorithm returns a multi-criteria route modeled on COVID-19-modified parameters of micro-mobility and betweenness centrality considering COVID-19 avoidance as well as the shortest available safe route for user ease and shortened time of outside environment exposure. We verified our routing algorithm in a part of Delhi, India, by visualizing containment zones and medical establishments. The results with COVID-19 data analysis and route planning suggest a safer route in the context of the coronavirus outbreak as compared to normal navigation and on average route extension is within 8%–12%. Moreover, for further advancement and post-COVID-19 era, we discuss the need for adding open data policy and the spatial system architecture for data usage, as a part of a pandemic strategy. The study contributes new micro-mobility parameters adapted for COVID-19 and policy guidelines based on aggregated contact tracing data analysis maintaining privacy, security, and anonymity.


Author(s):  
Camille Krier ◽  
Julie Chrétien ◽  
Marion Lagadic ◽  
Nicolas Louvet

Shared dockless e-scooters were first launched in Paris in the summer of 2018. These services were met with mixed reception: although some praised them for offering a new mobility solution to urban dwellers, others soon questioned their environmental impact. An emerging body of literature using lifecycle analysis shows that shared e-scooters are more pollutant than walking, cycling, and public transportation, but remain preferable to cars. To better grasp the impacts of dockless e-scooters, it is therefore necessary to identify which modes of transportation they replace. As mobility highly depends on local context, city-specific data are needed. Although modal change data from cities in North America and New Zealand are available, there is no similar information from dense European cities. Using quantitative survey data collected from shared e-scooter users in Paris, the present research offers novel data on modal shift toward dockless e-scooters in the French capital. Results show that for their last trip riding a shared e-scooter, most users would have walked or used public transportation had e-scooters not been an option, and only a limited share of them would have used a car. However, the overall impact of e-scooters on walking and public transportation use remains limited and they display a significant complementarity with public transportation. Such city-specific data on e-scooter use and impacts provide valuable inputs for local public authorities to implement efficient and tailored regulatory measures, so as to include these services in sustainable mobility policies.


2021 ◽  
Vol 13 (8) ◽  
pp. 4437
Author(s):  
Sitti Asmah Hassan ◽  
Intan Nurfauzirah Shafiqah Hamzani ◽  
Abd. Ramzi Sabli ◽  
Nur Sabahiah Abdul Sukor

Bus rapid transit (BRT) is one of the strategies to promote improvements in urban mobility. In this study, BRT scenarios, which integrate exclusive bus lanes and bus priority signal control in mixed traffic scenarios, were modelled using a VISSIM microsimulation. Three scenarios of BRT were modelled to represent 16:84, 38:62 and 54:46 modal splits between public transport and private vehicles. It was found that Scenario 4 (the 54:46 scenario) offers better benefits in terms of delay time saving and economic benefits. In general, it was found that the BRT system enhances the functioning of the transport system and provides people with faster and better mobility facilities, resulting in attractive social and economic benefits, especially on a higher modal split of public transport. It is regarded as one strategy to alleviate traffic congestion and reduce dependency on private vehicles. The finding of this study provides an insight on the effective concept of the BRT system, which may promote the dissemination of an urban mobility solution in the city. The results can help policymakers and local authorities in the management of a transport network in order to ensure reliable and sustainable transport.


2021 ◽  
Vol 13 (2) ◽  
pp. 958
Author(s):  
Nadine Kostorz ◽  
Eva Fraedrich ◽  
Martin Kagerbauer

New, i.e., shared and digitized, mobility services have been entering urban mobility markets around the globe. Among these new offerings is ridepooling, a mobility solution that bundles requests from passengers with similar routes in real-time and matches them with a vehicle. Ridepooling is quite novel in Germany and knowledge about users, changes in travel behavior, and impacts on the urban traffic system is scarce. To address this gap, we conducted an online survey among users and non-users of MOIA, a German ridepooling provider. Over 12,000 respondents completed the survey. The article presents results on ridepooling users’ characteristics and usage patterns. We found that MOIA users cover all age groups and are multimodal travelers—which leads us to assume that ridepooling enriches mobility portfolios and also serves as an alternative to the private car. MOIA is mostly used occasionally and, in particular, during the evening or the night. A specific focus of the article lies on users with mobility impairments as well as how and by whom ridepooling is used on work-related trips. Both topics are particularly relevant in light of changing travel patterns and transforming urban transport systems towards more sustainability.


2021 ◽  
pp. 157-166
Author(s):  
Hans-Jörg Dennig ◽  
Adrian Burri ◽  
Philipp Ganz

AbstractThis paper describes the technical features of the light electric vehicle (L2e-category) named BICAR. This specially designed vehicle is an all-in-one emissions-free micro-mobility solution providing a cost-effective and sustainable mobility system while supporting the transition towards a low carbon society (smart and sustainable city concept). The BICAR represents part of a multimodal system, complementing public transport with comfort and safety, relieving inner-city congestion and solving the “first and last mile” issue. The BICAR is the lightest and smallest three-wheel vehicle with weather protection. Due to the space-saving design, six to nine BICARS will fit into a single standard parking space. Safety is increased by an elevated driving position and a tilting mechanism when cornering. The BICAR achieves a range of 40–60 km depending on the battery package configuration in urban transport at a speed of 45 km/h. It features a luggage storage place and exchangeable, rechargeable batteries. The BICAR can be driven without a helmet thanks to the safety belt system, which is engineered for street approved tests. The BICAR has an integrated telematic box connected to the vehicle electronics and communicating with the dedicated mobile application, through which the BICAR can be geo-localised, reserved, locked/unlocked and remotely maintained.


2020 ◽  
Vol 12 (23) ◽  
pp. 10140
Author(s):  
Panagiotis Georgakis ◽  
Adel Almohammad ◽  
Efthimios Bothos ◽  
Babis Magoutas ◽  
Kostantina Arnaoutaki ◽  
...  

The continuing growth of urbanisation poses a real threat to the operation of transportation services in large metropolitan areas around the world. As a response, several initiatives that promote public transport and active travelling have emerged in the last few years. Mobility as a Service (MaaS) is one such initiative with the main goal being the provision of a holistic urban mobility solution through a single interface, the MaaS operator. The successful implementation of MaaS requires the support of a technology platform for travellers to fully benefit from the offered transport services. A central component of such a platform is a journey planner with the ability to provide trip options that efficiently integrate the different modes included in a MaaS scheme. This paper presents a heuristic that implements a scenario-based journey planner for users of MaaS. The proposed heuristic provides routes composed of different modes including private cars, public transport, bike-sharing, car-sharing and ride-hailing. The methodological approach for the generation of journeys is explained and its implementation using a microservices architecture is presented. The implemented system was trialled in two European cities and the analysis of user satisfaction results reveal good overall performance.


Sign in / Sign up

Export Citation Format

Share Document