Adsorption Studies of Methylene Blue Dye using Biosorbents

2018 ◽  
Vol 8 (3) ◽  
pp. 502-513
Author(s):  
Saravanan Narayanan ◽  
Rathika Govindasamy
2019 ◽  
Vol 4 (1-2) ◽  
pp. 1-6
Author(s):  
M. Mahadeva Swamy ◽  
B.M. Nagabhushana ◽  
Nagaraju Kottam

The present experiment explains the effectiveness of adsorption studies of methylene blue dye from aqueous solutions on activated carbon from Selenicereus grandiflorus (SG) treated with conc. sulfuric acid. The sulphuric acid-treated Selenicereus grandiflorus activated carbon (SGAC) was used as low-cost adsorbent for the removal of methylene blue dye from aqueous solution. It suggests an ideal alternative method to adsorption of dye compared to other expensive treatment options. The adsorption studies have been conducted at different experimental parameters, i.e., pH, contact time, adsorbent dose and initial dye concentration. The batch mode experiments were conducted by different adsorbent dose (0.03-0.150 g per 50 mL), pH of the solution (2-12), effect of time (3-18 min), initial dye concentration (10 mg/L), point of zero charge and regeneration of spent adsorbent studies. Langmuir model shows better fit to the equilibrium data (R2 = 0.966) than Freundlich model. The adsorption capacity (Qm) of SGAC increases with increasing dosage where Qm is 16.17 mg g-1.


2011 ◽  
Vol 85 (2) ◽  
pp. 279-287 ◽  
Author(s):  
A. Kriaa ◽  
N. Hamdi ◽  
E. Srasra

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Onur Al ◽  
Recep Boncukcuoğlu ◽  
Sinan Güneysu

Purpose Cationic resin is widely used in decolouring of textile wastewaters. Tonnes of resin are used in sector, and disposal of resin is being a second waste problem. The purpose of this paper is to investigate the adsorption behaviour of the methylene blue cationic dye from aqueous solution on the cation exchanger Lewatit CNP80 to understand the regenerability of cation exchanger resin from textile wastewaters. Design/methodology/approach Cationic resin was used as an alternative low-cost adsorbent for removing methylene blue dye from textile wastewaters. The adsorption study was carried out in the batch mode. Batch adsorption studies were carried out to examine the effect of parameters such as methylene blue concentration, temperature, pH, resin dose, shaking speed and contact time. Findings It was observed that dye-removal capacity of resin was reached from 17 mgg−1 to 19.4 mgg−1 at 25 °C temperature, pH 5 in 15 min. At the appropriate range of parameters, it was observed that more than 98% removal efficiency was achieved for methylene blue dye, and also, this study was focussed on whether the resin regenerates. In regeneration studies, our purpose was to recover of non-regenerable exhausted cationic resin by NaOCl. Regeneration of Lewatit CNP80 was performed in five cycles. After regeneration, the authors tried to determine whether the adsorption capacity was affected by regeneration. Originality/value In this study, the authors focussed on regeneration studies. The aim is to find easy, low-cost regeneration agent. In conclusion, the authors found that NaOCl is eligible for regeneration studies. The exhausted resin was recovered by NaOCl, and the authors also tested 5th regeneration cycles. Sodium hypochlorite is not a common regeneration agent for adsorption studies. Generally, resin is regenerated by HCl or other regeneration agent products. As a result of that, operational cost was reduced, and the other thing that the authors want to emphasise is textile industry wastewater based high temperature; therefore, this regeneration study can easily work with textile industries.


2020 ◽  
Vol 7 (6) ◽  
pp. 065002 ◽  
Author(s):  
Buzuayehu Abebe ◽  
Ananda Murthy H C ◽  
Enyew Zerefa ◽  
Eticha Abdisa

2014 ◽  
Vol 6 (6) ◽  
Author(s):  
Neucinéia V. Chagas ◽  
Jeferson S. Meira ◽  
Fauze J. Anaissi ◽  
Fábio Luiz Melquiades ◽  
Sueli P. Quináia ◽  
...  

Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2021 ◽  
pp. 116225
Author(s):  
Preeti Kulkarni ◽  
Varuna Watwe ◽  
Tukaram Doltade ◽  
Sunil Kulkarni

Sign in / Sign up

Export Citation Format

Share Document