Basin evolution of the Ardjuna rift system and its implications for hydrocarbon exploration, Offshore Northwest Java, Indonesia

2018 ◽  
Author(s):  
M. Gresko
2000 ◽  
Vol 40 (1) ◽  
pp. 66 ◽  
Author(s):  
A.M.G. Moore ◽  
H.M.J. Stagg ◽  
M.S. Norvick

The northwest-trending Otway Basin in southeast Australia formed during the separation of Australia and Antarctica between the latest Jurassic and the Early Cainozoic. A new, deep-seismic data set shows that the basin comprises two temporally and spatially overlapping rift components:the mainly Late Jurassic to mid-Cretaceous, east-west trending, inner Otway Basin—comprising the onshore basin and most of the continental shelf basin; andthe northwest–southeast to north–south trending depocentres beneath the outer shelf and continental slope, extending from eastern South Australia to the west coast of Tasmania, and a relatively minor and ill-defined sub-basin underlying the continental rise in water depths greater than about 4,500 m. This rift system was most active from the mid-Cretaceous to Palaeogene, and was strongly affected by sinistral strike-slip motion as Australia and Antarctica separated.The continental slope elements contain the bulk of the sediment volume in the basin. From northwest to southeast, these elements comprise the Beachport and Morum Sub-basins, the north-south trending Discovery Bay High, and the Nelson Sub-basin which appears to be structurally and stratigraphically continuous with the Sorell Basin off west Tasmania.The reflection character of the crust and upper mantle varies widely across the basin, and there is a strong correlation between that character and the basin configuration. It appears that accommodation space beneath the slope basin was created largely by extension and removal of most of the laminated deep continental crust.There is encouragement for hydrocarbon exploration in the deep-water basin. Firstly, there are indications of diagenesis related to fluid flow in and above the strongly faulted Cretaceous section in the Morum Sub-basin. As an Early Cretaceous petroleum system is already proven beneath the continental shelf, this suggests that the same system is also active in deep-water. Secondly, existing sample data suggest that a second, Late Cretaceous petroleum system could be active where any source rocks are sufficiently deeply buried; this condition would probably be met in the Nelson Sub-basin.


2021 ◽  
Vol 61 (2) ◽  
pp. 640
Author(s):  
Abdul Kholiq ◽  
Claire Jacob ◽  
Bee Jik Lim ◽  
Oliver Schenk ◽  
Anubrati Mukherjee ◽  
...  

The Exmouth Sub-basin represents part of the intracratonic rift system of the northern Carnarvon Basin, Australia. Hydrocarbon exploration has resulted in the discovery of a variety of oil and gas accumulations, mainly in Upper Triassic, Upper Jurassic and Lower Cretaceous intervals. Recent 3D petroleum systems modelling aided in understanding the interaction of the complex basin evolution and hydrocarbon charge history, shedding light on the variety and distribution of hydrocarbon types encountered, whilst also highlighting future remaining potential in both proven and untested plays. As a result of this modelling, the Exmouth Subsurface Characterisation Study was commissioned to further leverage >12000km2of recently acquired and processed seismic data and integrate data from specifically conditioned wells from across the Exmouth Sub-basin. The primary study objective was to better understand the distribution of lithologies across the basin, with focus upon the reservoir presence and properties over proven and potential deeper sections. Furthermore, given the variety of hydrocarbon types encountered, this study set out to understand the amplitude behaviour of these types within the different reservoirs. Collectively, these results have aided in identifying analogous hydrocarbon amplitude responses across the basin, derisking identified plays, prospects and existing discoveries and fields whilst also identifying new plays and leads.


2003 ◽  
Vol 1 ◽  
pp. 9-20 ◽  
Author(s):  
Finn Surlyk ◽  
Jon R. Ineson

The Jurassic succession of Denmark is largely confined to the subsurface with the exception of exposures on the island of Bornholm in the Baltic Sea. In East Greenland, in contrast, the Jurassic is extensively exposed. Comparison of basin evolution in the two regions, which now occur on two separate plates, thus relies on highly different datasets. It is possible nevertheless to construct an integrated picture allowing testing of hypotheses concerning basin evolution, regional uplift, onset and climax of rifting, relative versus eustatic sea-level changes and sequence stratigraphic subdivision and correlation. On a smaller scale, it is possible to compare the signatures of sequence stratigraphic surfaces as seen on well logs, in cores and at outcrop and of sequences recognised and defined on the basis of very different data types. Breakdown of the successions into tectonostratigraphic megasequences highlights the high degree of similarity in overall basin evolution and tectonic style. An important difference, however, lies in the timing. Major events such as late Early – Middle Jurassic uplift, followed by onset of rifting, basin reorganisation and rift climax were delayed in East Greenland relative to the Danish region. This has important implications both for regional reconstructions of the rift system and for the understanding and testing of classical sequence stratigraphic concepts involving eustatic versus tectonic controls of basin evolution and stratigraphy.


Sign in / Sign up

Export Citation Format

Share Document