northern carnarvon basin
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 24)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. jgs2021-070
Author(s):  
Isabel C. Zutterkirch ◽  
Christopher L. Kirkland ◽  
Milo Barham ◽  
Chris Elders

Detrital zircon U-Pb geochronology has enabled advances in the understanding of sediment provenance, transportation pathways, and the depositional age of sedimentary packages. However, sample selection and processing can result in biasing of detrital zircon age spectra. This paper presents a novel approach using in-situ detrital zircon U-Pb measurements on thin-sections to provide greater confidence in maximum depositional ages and provenance interpretations. New U-Pb age data of 310 detrital zircon grains from 16 thin-sections of the Triassic Mungaroo Formation from two wells in the Northern Carnarvon Basin, Australia, are presented. Whilst detrital zircon age modes are consistent with previous work, there are some differences in the relative proportions of age modes, which is partly attributed to a lack of small grains in hand-picked grain mounts. The relative sample bias is quantified via grain size comparison of dated zircon (in thin-sections or hand-picked mounts) relative to all zircons identified in bulk-mounts and thin-sections. The youngest age mode (∼320 – 195 Ma) is consistent with an active margin to the north, likely South West Borneo and/or Lhasa terrane. The dated zircons reveal a maximum depositional age of 197 Ma for the upper part of Mungaroo Formation, suggesting deposition continued into the Early Jurassic.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5628911


2021 ◽  
Vol 73 (08) ◽  
pp. 51-52
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202246, “Wheatstone: What We Have Learned in Early Production Life,” by John Pescod, SPE, Paul Connell, SPE, and Zhi Xia, Chevron, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. Wheatstone and Iago gas fields, part of the larger Wheatstone project, commenced production in June 2017. The foundation subsea system includes nine Wheatstone and Iago development wells tied back to a central Wheatstone platform (WP) for processing. Hydrocarbons then flow through an export pipeline to an onshore processing facility that includes two liquefied-natural-gas (LNG) trains and a domestic gas facility. The complete paper highlights some of the key learnings in well and reservoir surveillance analysis and optimization (SA&O) developed using data from early production. Asset Overview Chevron Australia’s Wheatstone project is in the North West Shelf region offshore Australia (Fig. 1). Two gas fields, Wheatstone and Iago (along with a field operated by a different company), currently tie into the WP in the Northern Carnarvon Basin. These two gas fields are in water depths between 150 and 400 m. The platform processes gas and condensate through dehydration and compression facilities before export by a 220-km, 44-in., trunkline to two 4.45-million-tonnes/year LNG trains and a 200 tera-joule/day domestic gas plant. A Wheatstone/Iago subsea system consisting of two main corridors delivers production from north and south of the Wheatstone and Iago fields to the WP. Currently, the subsea system consists of nine subsea foundation development wells, three subsea production manifolds, two subsea 24-in. production flowlines, and two subsea 14-in. utility lines. The nine foundation development wells feed the subsea manifolds at rates of up to 250 MMscf/D. These wells have openhole gravel-pack completions for active sand control and permanent downhole gauges situated approximately 1000-m true vertical depth above the top porosity of multi-Darcy reservoir intervals for pressure and temperature monitoring. All wells deviate between 45 and 60° through the reservoir with stepout lengths of up to 2.5 km. The two subsea 24-in. production flowlines carry production fluids from the subsea manifolds to two separation trains on the WP. Each platform inlet production separator can handle up to 800 MMscf/D. The two 14-in. utility flowlines installed to the subsea manifolds allow routing of a single well to the platform multiuse header, which can direct flow into the multiuse separator (MUS) or other production separators at a rate of 250 MMscf/D.


2021 ◽  
Author(s):  
Jianfeng Yao ◽  
Xiang Li ◽  
Kai Zhao ◽  
Hui Zhang

Abstract Northern Carnarvon Basin is located in North West Shelf of Western Australia. The basin has over 10km sediments and owns both oil-prone and gas-prone sediments and is the current largest oil and gas producing basin in Australia. A geological section through this basin is shown in Figure 1, the complex geological settings from shallow to deep leads to significant processing challenges. In the vintage processing, the seismic image at reservoir level is deteriorated due to the presence of following geological complexities: 1) rugose water bottom, 2) shallow frequent canyons or channel systems, 3) shallow spatial-variant Tertiary carbonates, and 4) shallow gas chimneys and other geo-bodies. These complex overburdens plus limited small-angle coverage of primary reflections from narrow azimuth (NAZ) streamer surveys make it very difficult for ray-based reflection tomography to resolve the shallow velocity. As a result, the target image suffers from large well mis-ties, low signal-to-noise ratio (S/N) and severe event undulations. In addition, shallow fast-velocity layers cause severe illumination issues for deep targets which are compounded by limited offsets of NAZ surveys. Furthermore, localised absorption effects from gas pockets lead to dimming amplitudes for events beneath them. To deal with these issues, we propose to use time-lag full wave-form inversion (TLFWI) to resolve the velocity of complex overburdens and least-squares Q prestack depth migration (LS Q-PSDM) to compensate for illumination issues and absorption effects for the latest reprocessing. In the following sections, application procedure and results of these two technologies will be discussed. Seismic inversion was also conducted to assist the processing and analysis of the final result.


2021 ◽  
Author(s):  
Chris Elders ◽  
Sara Moron

<p>The North West Shelf of Australia has experienced numerous rift events during its prolonged evolution that most likely started in the Lower Palaeozoic and continued through to the formation of the present day passive margin in the Lower Cretaceous.  Carboniferous and Permian is associated with rifting of the Lhasa terrane, a phase extension in the Lower and Middle Jurassic associated with the separation of the Argo terrane Upper Jurassic to Lower Cretaceous extension culminated in the separation of Greater India and Australia.  Investigations based on interpretation of extensive, public domain seismic data, combined with numerical mechanical modelling, demonstrate that crustal structure, rheology and structural fabrics inherited from older events exert a significant control on the architecture of younger rifts.</p><p>Defining the older, more deeply buried rift episodes is challenging, but with seismic data that now images deeper structures more effectively, it is clear that NE-SW oriented Carboniferous to Permian aged rift structures control the overall geometry of the margin.  Variations in the timing, distribution and intensity of that rift may account for some of the complexity that governs the Triassic – a failed arm of the rift system might account for the accumulation of thick sequences of fluvio-delatic sediments in an apparent post-rift setting, while active deformation and igneous activity continued elsewhere on the margin.</p><p>A renewed phase of extension began in the latest Triassic in the western part of the Northern Carnarvon Basin, but became progressively younger to the NE.  High-resolution mechanical numerical experiments show that the dual mode of extension that characterises the Northern Carnarvon Basin, where both distributed and localised deformation occurs at the same time, is best explained by necking and boudinage of strong lower crust, inherited form the Permian rift event, proximal to the continental margin, and a subdued extensional strain rate across the distal extended margin.  A very clear and consistent pattern of ENE oriented extension, which interacts obliquely with the older NE-SW oriented Permian aged structures, is apparent across the whole of the Northern Carnarvon Basin and extends north east into the Roebuck and Browse Basins.  This is at odds with the NW-SE oriented extension predicted by the separation of the Argo terrane which occurs at this time.  This may be explained by the detached style of deformation that characterises the Mesozoic interval.  Alternatively, the separation of Greater India may have exerted a stronger influence on the evolution of the margin during the Jurassic than hitherto recognised.</p>


2021 ◽  
Vol 61 (2) ◽  
pp. 600
Author(s):  
Michael Curtis ◽  
Simon Holford ◽  
Mark Bunch ◽  
Nick Schofield

The Northern Carnarvon Basin (NCB) forms part of the North West Australian margin. This ‘volcanic’ rifted margin formed as Greater India rifted from the Australian continent through the Jurassic, culminating in breakup in the Early Cretaceous. Late Jurassic to Early Cretaceous syn-rift intrusive magmatism spans 45000km2 of the western Exmouth Plateau and the Exmouth Sub-basin; however, there is little evidence of associated contemporaneous volcanic activity, with isolated late Jurassic volcanic centres present in the central Exmouth Sub-basin. The scarcity of observed volcanic centres is not typical of the extrusive components expected in such igneous provinces, where intrusive:extrusive ratios are typically 2–3:1. To address this, we have investigated the processes that led to the preservation of a volcanic centre near the Pyrenees field and the Toro Volcanic Centre (TVC). The volcanic centre near the Pyrenees field appears to have been preserved from erosion associated with the basin-wide KV unconformity by fault-related downthrow. However, the TVC, which was also affected by faulting, is located closer to the focus of regional early Cretaceous uplift along the Ningaloo Arch to the south and was partly eroded. With erosion of up to 2.6km estimated across the Ningaloo Arch, which, in places, removed all Jurassic strata, we propose that the ‘Exmouth Volcanic Province’ was originally much larger, extending south from the TVC into the southern Exmouth Sub-basin prior to regional uplift and erosion, accounting for the ‘missing’ volume of extrusive igneous material in the NCB.


2021 ◽  
Vol 61 (2) ◽  
pp. 640
Author(s):  
Abdul Kholiq ◽  
Claire Jacob ◽  
Bee Jik Lim ◽  
Oliver Schenk ◽  
Anubrati Mukherjee ◽  
...  

The Exmouth Sub-basin represents part of the intracratonic rift system of the northern Carnarvon Basin, Australia. Hydrocarbon exploration has resulted in the discovery of a variety of oil and gas accumulations, mainly in Upper Triassic, Upper Jurassic and Lower Cretaceous intervals. Recent 3D petroleum systems modelling aided in understanding the interaction of the complex basin evolution and hydrocarbon charge history, shedding light on the variety and distribution of hydrocarbon types encountered, whilst also highlighting future remaining potential in both proven and untested plays. As a result of this modelling, the Exmouth Subsurface Characterisation Study was commissioned to further leverage >12000km2of recently acquired and processed seismic data and integrate data from specifically conditioned wells from across the Exmouth Sub-basin. The primary study objective was to better understand the distribution of lithologies across the basin, with focus upon the reservoir presence and properties over proven and potential deeper sections. Furthermore, given the variety of hydrocarbon types encountered, this study set out to understand the amplitude behaviour of these types within the different reservoirs. Collectively, these results have aided in identifying analogous hydrocarbon amplitude responses across the basin, derisking identified plays, prospects and existing discoveries and fields whilst also identifying new plays and leads.


2021 ◽  
Vol 61 (2) ◽  
pp. 611
Author(s):  
Jarrad Grahame ◽  
Jianfeng Yao

The Davros-Typhon Multi-Client 3D surveys are located approximately 70km from the north-west coast of Australia, largely covering the NE trending Dampier Sub-basin and straddling the Rankin Trend within the Northern Carnarvon Basin. The basins within the North West Shelf formed as a result of seafloor spreading, associated with the breakup of the North West margin of East Gondwana. The combined, contiguous Davros-Typhon survey areas cover a number of significant discoveries and producing fields, which include both oil and gas accumulations. The key objective of the survey was to enhance the imaging of Triassic to Lower Cretaceous reservoir units and to develop a new interpretation framework, made possible by the modern broadband acquisition parameters and advanced processing techniques. Challenges associated with imaging and interpretation include the effects of high velocity carbonate overburden, steeply dipping structures, fault shadow and structural complexity at depth, which is critical for evaluation of reservoir targets. A major reprocessing effort was undertaken to further mitigate these issues, which included Davros and a number of adjacent existing 3D surveys, resulting in the Typhon Multi-Client 3D. CGG Multi-client and New Ventures geoscientists, in collaboration with CGG Seismic Imaging, have undertaken new interpretation and amplitude versus offset (AVO) inversion analysis using subsets of the Typhon 3D. The resulting volume-based attribute analysis and integration of new AVO inversion results demonstrates enhanced attribute quality for the reprocessed data and provides a platform for quantitative analysis over a large area of the Northern Carnarvon Basin.


2021 ◽  
Vol 61 (2) ◽  
pp. 294
Author(s):  
Thomas Bernecker ◽  
Ryan Owens ◽  
Andrew Kelman ◽  
Kamal Khider

In 2021, a total of 21 areas were released for offshore petroleum exploration. They are located in the Bonaparte Basin, Browse Basin, Northern Carnarvon Basin, Otway Basin, Sorell Basin and Gippsland Basin. Despite COVID-19 negatively impacting the industry, participation in the acreage release nomination process was again robust. However, as has been the case in recent years, industry interest is focussed on those areas that are close to existing discoveries and related infrastructure. In tune with the Australian government’s resource development strategy, the areas being offered for exploration are likely to supply extra volumes of natural gas, both for export to Southeast Asian markets and domestically to meet the forecasted shortage in supply to eastern Australia. According to the 2019 implementation of a modified release process, only one period for work program bidding has been scheduled. The closing date for all submissions is Thursday, 3 March 2022. Geoscience Australia continues to support industry activities by acquiring, interpreting and integrating pre-competitive datasets that are made freely available in the context of the agency’s regional petroleum geological studies. As part of a multidisciplinary study, new data, including regional seismic and petroleum systems modelling, for the Otway Basin are now available. Also, a stratigraphic/sedimentological review of the upper Permian to Early Triassic succession in the southern Bonaparte Basin has been completed, the results of which are being presented at this APPEA conference. Large seismic and well data sets, submitted under the Offshore Petroleum and Greenhouse Gas Storage Act 2006 (OPGSSA), are made available through the National Offshore Petroleum Information Management System (NOPIMS). Additional data and petroleum-related information can be accessed through Geoscience Australia’s data repository.


2021 ◽  
Vol 61 (2) ◽  
pp. 726
Author(s):  
Charmaine M. Thomas

A new sampling program of Permian potential source rocks was undertaken to improve knowledge of the Permian petroleum prospectivity in new parts of the Southern Carnarvon and inboard Northern Carnarvon Basins. Presented here are new Rock-Eval data from previously unsampled wells, drillholes and outcrop and new infill sampling between existing data points. Kerogen assemblages of selected intervals were also determined from palynofacies analysis or organic petrography, which suggests the good Permian source rocks are generally dominated by gas-prone kerogens. Possibly terrestrial-derived oil-prone kerogen can also be frequently found in thin intervals of the upper Permian and more rarely in lower Permian in the onshore northern Carnarvon Basin.


Sign in / Sign up

Export Citation Format

Share Document