DEPOSITION HISTORY OF NORTH BELUT FIELD – INTEGRATED ANALYSIS OF CORE, ELECTRIC LOG AND SEISMIC DATA

Author(s):  
B. Pangarso
2014 ◽  
Author(s):  
Mohamed S El-Hateel ◽  
Parvez Ahmad ◽  
Ahmed Hesham A Ismail ◽  
Islam A M Henaish ◽  
Ahmed Ashraf

2021 ◽  
Author(s):  
Chingis Oshakbayev ◽  
Roman Romanov ◽  
Valentin Vlassenko ◽  
Simon Austin ◽  
Sergey Kovalev ◽  
...  

Abstract Currently drilling of horizontal wells is a common enhanced oil recovery method. Geosteering services are often used for accurate well placement, which makes it possible to achieve a significant increase in production at relatively low cost. This paper describes the result of using seismic data in three-dimensional visualization for high-quality geosteering using a deep boundary detection tool and multilayer inversion in real time. Crossing the top of the reservoir while drilling horizontal sections at the current oilfield is unacceptable, due to the presence of reactive mudstones. In case of crossing the top of reservoir, further work on running and installing the liner becomes impossible due to instability and may lead to well collapse. Based on prewell analysis of the structural data, the well was not supposed to approach the top of the target formation along the planned profile. However, while preparing geosteering model and analyzing seismic data it became possible to reveal that risk, elaborate its mitigation and eventually increase the length of the horizontal section. Such integrated analysis made it possible to maintain the wellbore within the target reservoirs, as well as to update the structural bedding of the top based on the multilayer inversion results.


Author(s):  
M.S. El-Hateel ◽  
P. Ahmad ◽  
A.H.A. Ismail ◽  
I.A.M. Henaish ◽  
A. Ashraf

2014 ◽  
Author(s):  
A. Kumar ◽  
W. Ismail Wan Yusoff ◽  
V. Sagayan a/l Asirvadam ◽  
S. Chandra Dass

1994 ◽  
Vol 34 (1) ◽  
pp. 529 ◽  
Author(s):  
G.W. O'Brien ◽  
C.V. Reeves ◽  
P.R. Milligan ◽  
M.P. Morse ◽  
E.M. Alexander ◽  
...  

The integration of high resolution, image-processed aeromagnetic data with regional geological, magnetic, gravity and seismic data-sets has provided new insights into the structural architecture, rifting history, and petroleum potential of the western onshore and offshore Otway Basin, south-eastern Australia.Three principal structural directions are evident from the magnetic data: NS, NE-ENE and NW-WNW. The structural fabric and regional geological data suggest that the rifting history of the basin may have taken place in two distinct stages, rather than within a simple rift-to-drift framework. The initial stage, from 150 to ~120 Ma, took place within a stress regime dominated by NW-SE extensional transport, similar to that of the basins within the Great Australian Bight to the west. ENE-striking extensional rift segments, such as the Crayfish Platform-Robe Trough and the Torquay Sub-Basin, developed during this period, contemporaneous with the deposition of thick sediments of the Early Cretaceous (Tithonian-Hauterivian) Crayfish Subgroup. In other parts of the basin, NW-striking rift segments, such as the Penola, and perhaps Ardonachie, Troughs onshore, developed within a strongly trans-tensional (left-lateral strike-slip) environment. At ~120 Ma, the regional stress field changed, and the Crayfish Subgroup-aged rift segments were reactivated, with uplift and block faulting extending through to perhaps 117 Ma. Rifting then recommenced at about 117 Ma (contemporaneous with the deposition of the Barremian-Albian Eumeralla Formation), though the extensional transport direction was now oriented NNE-SSW, almost perpendicular to that of the earlier Crayfish Subgroup rift stage. This later rift episode ultimately led to continental breakup at ~96 Ma and produced the 'traditional' normal fault orientations (NW-SE to WNW-ESE) throughout the Otway Basin.


1995 ◽  
Vol 35 (1) ◽  
pp. 358 ◽  
Author(s):  
R. Lovibond ◽  
R.J. Suttill ◽  
J.E. Skinner ◽  
A.N. Aburas

The Penola Trough is an elongate, Late Jurassic to Early Cretaceous, NW-SE trending half graben filled mainly with synrift sediments of the Crayfish Group. Katnook-1 discovered gas in the basal Eumeralla Formation, but all commercial discoveries have been within the Crayfish Group, particularly the Pretty Hill Formation. Recent improvements in seismic data quality, in conjunction with additional well control, have greatly improved the understanding of the stratigraphy, structure and hydrocarbon prospectivity of the trough. Strati-graphic units within the Pretty Hill Formation are now mappable seismically. The maturity of potential source rocks within these deeper units has been modelled, and the distribution and quality of potential reservoir sands at several levels within the Crayfish Group have been studied using both well and seismic data. Evaluation of the structural history of the trough, the risk of a late carbon dioxide charge to traps, the direct detection of gas using seismic AVO analysis, and the petrophysical ambiguities recorded in wells has resulted in new insights. An important new play has been recognised on the northern flank of the Penola Trough: a gas and oil charge from mature source rocks directly overlying basement into a quartzose sand sequence referred to informally as the Sawpit Sandstone. This play was successfully tested in early 1994 by Wynn-1 which flowed both oil and gas during testing from the Sawpit Sandstone. In mid 1994, Haselgrove-1 discovered commercial quantities of gas in a tilted Pretty Hill Formation fault block adjacent to the Katnook Field. These recent discoveries enhance the prospectivity of the Penola Trough and of the Early Cretaceous sequence in the wider Otway Basin where these sediments are within reach of the drill.


2020 ◽  
Vol 8 ◽  
Author(s):  
M. Giustiniani ◽  
U. Tinivella ◽  
S. Parolai ◽  
F. Donda ◽  
G. Brancolini ◽  
...  

The integrated analysis using different seismic wave types in a record is a very efficient approach for a comprehensive characterization of marine sediments, especially in shallow water conditions. The proposed integrated method to analyze seismic data in post-critical conditions consists of: 1) the inversion of Scholte waves to obtain a reliable Vs distribution of the near seafloor; 2) pre-processing of seismic data; 3) construction of the P-wave velocity field by using all available information, including available well data; and 4) the application of the wave equation datuming and post-processing, such as pre-stack time migration. We demonstrate how this approach could be successfully applied on seismic datasets characterized by post-critical conditions and the occurrence of the Scholte waves, which may be exploited to provide fundamental information instead of being only an unwanted effect. The integrated analysis of seismic events can thus help, together with data processing, by providing better seismic imaging, which is a priority for a reliable seismostratigraphic interpretation.


Sign in / Sign up

Export Citation Format

Share Document