Hydrocarbon play in North Sumatra basin and sequence stratigraphy application on Keutapang reservoir formation based on well logs data

Author(s):  
M.R. Hakim
Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. B221-B228 ◽  
Author(s):  
Zhaohui Xu ◽  
Bo Zhang ◽  
Fangyu Li ◽  
Gang Cao ◽  
Yuming Liu

Sequence stratigraphy analysis is one of the most important tasks in evaluating and characterizing the reservoir system within a basin. However, it is very hard to identify the system tracts and lithofacies using well logs for the conglomerate reservoirs because of the strong lithology heterogeneity. Based on the fact that the system tracts and lithofacies usually illustrate cycle features within the basin, we decompose the well logs into different intrinsic modes to characterize the sequence units and lithofacies at different scale. First, we analyze the log response to lithologies to determine the well logs used for sequence analysis. Then, we use variational mode decomposition to decompose the selected well logs into an ensemble of different band-limited intrinsic mode functions, each with its center wavenumber. Finally, we interpret the sequence stratigraphy and lithofacies using corresponding decomposed modes. We validate the effectiveness of our method in the lithofacies and sequence identification for a conglomerate reservoir in the Shengli oil field, Bohai Bay Basin, east China. The decomposed intrinsic modes with a larger center wavenumber perfectly characterize the sequence units at a larger scale, whereas the decomposed intrinsic modes with a smaller center wavenumber reveal the lithofacies changes at a smaller scale. The application illustrates that it is much more convenient and easier for sequence stratigraphy analysis to integrate the original and decomposed logs.


1994 ◽  
Vol 34 (1) ◽  
pp. 350 ◽  
Author(s):  
Keyu Liu ◽  
Lincoln Paterson ◽  
Feng Xu Jian

SEDPAK is a forward modelling computer program for depositional processes developed by the University of South Carolina's StratMod Group. It simulates the geometry of generalised lithofacies in a sedimentary sequence or a basin by considering principally four major geological variables: eustatic sea level, tectonic movement, sediment accumulation, and initial and evolving basin surfaces.Based on seismic data, well logs and other information from drill holes, the geometries of sedimentary sequences of the Gippsland Basin and the Barrow-Exmouth Sub-basins have been successfully reproduced on both basin and reservoir scales using SEDPAK 3.12. The simulation results indicate that eustacy, tectonics, sediment input and basin physiography can be equally important in controlling the geometry of strata and basin architecture. However, some differences exist: (1) tectonic movement normally contributes to long-term variations of the first order (megasequence) basin architecture and configuration; (2) the second order (sequence) basin architecture and stratal geometry can be controlled by either sediment supply, eustacy, tectonism or a combination; and (3) high frequency facies variations and stratal geometry within individual sequences are primarily controlled by eustatic sea level variations and basin physiography.This study has demonstrated that SEDPAK is a useful tool for reconstruction of basin evolution histories and for reservoir characterisation. It can also be used to predict sedimentary facies in undrilled exploration frontier areas. In addition, it can be used to address some critical assumptions and problems in the sequence stratigraphy concept. SEDPAK is particularly useful in the study of high frequency sequence stratigraphy and cyclicity, where various sequence or parasequence bounding surfaces and internal geometry can not be easily recognised from seismic data, well logs and outcrops.


Author(s):  
G. C. Yulitha

The Baong Formation is one of the formations that has hydrocarbon potential in the Aru Sub Basin, North Sumatra Basin (Figure 1). However, geological information in that area is still far less than is available in others. Analysis of sequence stratigraphy needs to be done to enrich geological information of the study area, maximize the results of exploration before exploitation, and make it easier to find the distribution of potential layers of oil and gas. Methods that are used in this research are electrofacies analysis to show the appearance of rock grain size and geological processes that affect its formation, Well Seismic Tie and interpretation of the horizon along with structures to produce a Time Structure Map, and correlate the sequences in log wells and 2D seismic cross section to know the same area of each sequence. Based on third-order sequence, the Baong Formation was divided into two types of system tract, such as Lowstand System Tract (LST) and Transgressive System Tract (TST). Maximum Flooding Surface (MFS) as the lower boundary of LST, Transgressive Surface (TS) as the boundary between LST and TST, and Maximum Flooding Surface as the upper boundary of TST. Based on fourth-order sequence, each of the system tracts was divided into seven parasequences with Flooding Surface as the boundary. The research area can also be interpreted into a conceptual model of a hydrocarbon system.


Author(s):  
E. A. Rosa

The study area is physiographically part of the Barito Basin, South Kalimantan (Van Bemmelen, 1949). 2D seismic data along with well logs from three wells, biostratigraphy data from two wells, and core data are utilized to do an integrated sequence stratigraphy. Petrography data from the equivalent formation at well-X from the study area is also used to support the evaluation. This study was to determine lithology facies and depositional environment based on several key maps: Sand Shale Ratio (SSR), Isopach, and Paleogeographic Maps. After that, seismically-supported sequence stratigraphy was applied to vertically and laterally subdivide the facies distribution and paleogeography into two depositional models based on the following key sequence-stratigraphic markers: (1) Sequence Boundary (SB)-1 to SB-2 that show regressive succession, and (2) SB-2 to Top Tanjung Formation that reflects transgressive phase.


1990 ◽  
Author(s):  
J. C. Van Wagoner ◽  
R. M. Mitchum ◽  
K. M. Campion ◽  
V. D. Rahmanian

2013 ◽  
Vol 734-737 ◽  
pp. 166-169
Author(s):  
Hong Qi Yuan ◽  
Ying Hua Yu ◽  
Dong Li Sun

Sequence is a relatively conformable succession of genetically related strata bounded by unconformities or their correlative conformities. The correct identification of sequence boundaries is the key to the success of the sequence stratigraphic approach. Stratigraphic boundaries provide the fundamental framework for the genetic interpretation of any sedimentary succession, irrespective of how one may choose to name the packages of strata between them. Sequence stratigraphy of main research content is mainly chronohorizon (unconformity or conformity) identification, and to determine its causes and characteristics. Then, the key to sequence stratigraphy is identification unconformity and their correlative conformities. Unconformity and their correlative conformities on the seismic profiles, well logs, lithology, paleontology, and geochemical data have distinctive sequence boundaries mark characteristics.


Sign in / Sign up

Export Citation Format

Share Document