scholarly journals REDUCTION OF ACTIVE POWER LOSS BY COYOTE SEARCH ALGORITHM

2018 ◽  
Vol 6 (10) ◽  
pp. 130-138
Author(s):  
K. Lenin

This paper presents Coyote Search Algorithm (CSA) for solving optimal reactive power problem. Coyote Search Algorithm is a new bio – inspired heuristic algorithm which based on coyote preying behaviour. The way coyote search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power problem. And the specialty of coyote is possessing both individual local searching ability & autonomous flocking movement and this special property has been utilized to formulate the search algorithm. The proposed Coyote Search Algorithm (CSA) has been tested on standard IEEE 57 bus test system and simulation results shows clearly about the good performance of the proposed algorithm in reducing the real power loss.

Author(s):  
Kanagasabai Lenin

This paper proposes Enhanced Frog Leaping Algorithm (EFLA) to solve the optimal reactive power problem. Frog leaping algorithm (FLA) replicates the procedure of frogs passing though the wetland and foraging deeds. Set of virtual frogs alienated into numerous groups known as “memeplexes”. Frog’s position’s turn out to be closer in every memeplex after few optimization runs and certainly, this crisis direct to premature convergence. In the proposed Enhanced Frog Leaping Algorithm (EFLA) the most excellent frog information is used to augment the local search in each memeplex and initiate to the exploration bound acceleration. To advance the speed of convergence two acceleration factors are introduced in the exploration plan formulation. Proposed Enhanced Frog Leaping Algorithm (EFLA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.


Author(s):  
Kanagasabai Lenin

In this work Predestination of Particles Wavering Search (PPS) algorithm has been applied to solve optimal reactive power problem. PPS algorithm has been modeled based on the motion of the particles in the exploration space. Normally the movement of the particle is based on gradient and swarming motion.  Particles are permitted to progress in steady velocity in gradient-based progress, but when the outcome is poor when compared to previous upshot, immediately particle rapidity will be upturned with semi of the magnitude and it will help to reach local optimal solution and it is expressed as wavering movement. In standard IEEE 14, 30, 57,118,300 bus systems Proposed Predestination of Particles Wavering Search (PPS) algorithm is evaluated and simulation results show the PPS reduced the power loss efficiently.


2018 ◽  
Vol 6 (8) ◽  
pp. 105-113
Author(s):  
K. Lenin

This paper proposes Improved Brain Storm Optimization (IBSO) algorithm is used for solving reactive power problem. predictably, optimization algorithm stimulated by human being inspired problem-solving procedure should be highly developed than the optimization algorithms enthused by collective deeds of ants, bee, etc. In this paper, a new Improved brain storm optimization algorithm defined, which was stimulated by the human brainstorming course of action. In the projected Improved Brain Storm Optimization (IBSO) algorithm, the vibrant clustering strategy is used to perk up the k-means clustering process & exchange of information wrap all ideas in the clusters to accomplish suitable searching capability. This new approach leads to wonderful results with little computational efforts. In order to evaluate the efficiency of the proposed Improved Brain Storm Optimization (IBSO) algorithm, has been tested standard IEEE 30 bus test system and compared to other standard reported algorithms. Simulation results show that Improved Brain Storm Optimization (IBSO) algorithm is superior to other algorithms in reducing the real power loss.


Author(s):  
Kanagasabai Lenin

<p>In this work Spinner Dolphin Swarm Algorithm (SDSA) has been applied to solve the optimal reactive power problem. Dolphins have numerous remarkable natural distinctiveness and living behavior such as echolocation, information interactions, collaboration, and partition of labor. Merging these natural distinctiveness and living behavior with swarm intelligence has been modeled to solve the reactive power problem. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.</p>


Author(s):  
Kanagasabai Lenin

<span lang="EN-US">In this paper Gentoo Penguin Algorithm (GPA) is proposed to solve optimal reactive power problem. Gentoo Penguins preliminary population possesses heat radiation and magnetizes each other by absorption coefficient. Gentoo Penguins will move towards further penguins which possesses low cost (elevated heat concentration) of absorption. Cost is defined by the heat concentration, distance. Gentoo Penguins penguin attraction value is calculated by the amount of heat prevailed between two Gentoo penguins. Gentoo Penguins heat radiation is measured as linear. Less heat is received in longer distance, in little distance, huge heat is received. Gentoo Penguin Algorithm has been tested in standard IEEE 57 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.</span>


Author(s):  
K. Lenin

In this paper, an Improved Tabu Search (ITS) algorithm has been proposed to solve the optimal reactive power problem. In this work Tabu Search- has been hybridized with Simulated Annealing algorithm to solve the optimal reactive power problem. Hybridization of these two algorithms improves the exploration & exploitation capabilities during the search. Proposed Improved Tabu Search (ITS) algorithm has been tested in Standard IEEE 57,118 bus systems & real power loss has been comparatively reduced with voltage profiles are within the limits.


Author(s):  
K. Lenin

This paper presents Improved Frog Leaping (IFL) algorithm for solving optimal reactive power problem.  Comprehensive exploration capability of Particle Swarm Optimization (PSO) and   good local search ability of Frog Leaping Algorithm (FLA) has been hybridized to solve the reactive power problem and it overcomes the shortcomings of premature convergence. In order to evaluate the validity of the proposed Improved Frog Leaping (IFL) algorithm, it has been tested in Standard IEEE 57,118 bus systems and compared to other standard algorithms. Simulation results show that proposed Improved Frog Leaping (IFL) algorithm has reduced the real power loss considerably and voltage profiles are within the limits.


Author(s):  
Lenin Kanagasabai

This paper projects an Integrated Algorithm (IA) for solving optimal reactive power problem. Quick convergence of the Cuckoo Search (CS), the vibrant root change of the Firefly Algorithm (FA), and the incessant position modernization of the Particle Swarm Optimization (PSO) has been combined to form the Integrated Algorithm (IA).  In order to evaluate the efficiency of the proposed Integrated Algorithm (IA), it has been tested in standard IEEE 57,118 bus systems and compared to other standard reported algorithms. Simulation results show that Integrated Algorithm (IA) is considerably reduced the real power loss and voltage profile within the limits.


2018 ◽  
Vol 6 (11) ◽  
pp. 299-306
Author(s):  
K. Lenin

This paper presents Hybridization of Simulated Annealing with Nelder-Mead algorithm (SN) is proposed to solve optimal reactive power problem. The proposed Hybridized - Simulated Annealing, Nelder-Mead algorithm starts with a prime solution, which is produced arbitrarily and then the solution is disturbed into partitions. The vicinity zone is created, arbitrary numbers of partitions are selected and variables modernizing procedure is started in order to create a trail of neighbour solutions. This procedure helps the SN algorithm to explore the region around an existing iterate solution. The Nelder- Mead algorithm is used in the last stage in order to progress the most excellent solution found so far and hasten the convergence in the closing stage. The proposed Hybridization of Simulated Annealing with Nelder-Mead algorithm (SN) has been tested in standard IEEE 57,118 bus systems and simulation results show the superior performance of the proposed SN algorithm in reducing the real power loss and voltage profiles are within the limits.


2018 ◽  
Vol 6 (4) ◽  
pp. 301-311
Author(s):  
K. Lenin

In this paper Enhanced Spider (ES) algorithm is proposed to solve reactive power Problem. Enthused by the spiders, a new Enhanced Spider (ES) algorithm is utilized to solve reactive power problem. The composition is primarily based on the foraging approach of social spiders, which make use of of the vibrations spread over the spider web to choose the position of prey. The simulation results demonstrate high-quality performance of Enhanced Spider (ES) algorithm in solving reactive power problem.  The projected Enhanced Spider (ES) algorithm has been tested in standard IEEE 57,118 bus systems and compared to other reported standard algorithms. Results show that Enhanced Spider (ES) algorithm is more efficient than other algorithms in reducing the real power loss.


Sign in / Sign up

Export Citation Format

Share Document