scholarly journals A COMPARITIVE VIEW OVER THE SYNTHESIS OF SCHIFF BASE LIGANDS AND METAL COMPLEXES BY CONVENTIONAL AND SOLVENT FREE ROUTES

Author(s):  
Deeksha Sharma ◽  
Prof. Arpan Bhardwaj

In the present paper, synthesis of Schiff base ligands and the metal complexes are studied and compared by conventional and solvent free route. The synthesis of Schiff base ligands of amino acids (Glycine, Phenylalanine and Tyrosine) with salicylaldehyde and their mixed ligand ternary Cu(II) complexes are discussed. Other ligands are used in co-ordinaion with the schiff base is 1,10- Phenanthroline/thiourea  in equimolar ratio. The environmentally efficient and modern developed method for synthesis is the solid state synthesis of salicylidene amino acids through pestle mortar synthetic procedure. This method is compared with the conventional method that require refluxing the reactant mixture for hours in an organic solvent, here ethanol. The complexes are characterized by spectral techniques IR spectroscopy and UV spectroscopy. The investigations concluded that the pestle mortar assisted method is very rapid , simple and economic for the preparation of  ligands and complexes as well. The Antimicrobial studies were also performed for the complexes. The spectral data for the ligands and complexes obtained from either method, conventional and solventless procedure are in good agreement with one another. The azomethine bonding(-CH=N-) between salicylaldehyde amino acids based Schiff bases is described by the IR spectral peak around 1600 cm-1.                                      

2016 ◽  
Vol 9 (1) ◽  
pp. 1873-1882
Author(s):  
V. Sreenivas ◽  
G. Srikanth ◽  
Ch. Vinutha ◽  
M. Shailaja ◽  
P. Muralidhar Reddy ◽  
...  

A series of cobalt (II) complexes have been synthesized with Schiff bases derived from ortho-phthalaldehyde and various amines in aqueous methanol solution. The newly synthesized Schiff bases and their Co (II) complexes have been characterized  by elemental analysis, magnetic susceptibility, thermal, conductance measurements, mass, IR, electronic, 1H,13C-NMR spectral techniques. These ligands act as tetradentate species and coordinate to the metal center through the different potential donor atoms such as N, O and S. The probable octahedral structures have been assigned to these complexes. All the synthesized Schiff base ligands and Co(II) metal complexes have also been screened for their antimicrobial activities and metal complexes found to be more active than respective Schiff-base ligands.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
K. R. Joshi ◽  
A. J. Rojivadiya ◽  
J. H. Pandya

Two new series of copper(II) and nickel(II) complexes with two new Schiff base ligands 2-((2,4-dimethylphenylimino)methyl)-6-methoxy-4-nitrophenol and 2-((3,4-difluorophenylimino)methyl)-6-methoxy-4-nitrophenol have been prepared. The Schiff base ligands were synthesized by the condensation of 2-hydroxy-3-methoxy-5-nitrobenzaldehyde with 2,4-dimethylaniline or 3,4-difluoroaniline. The ligands and their metal complexes have been characterized by IR, 1H NMR, mass and electronic spectra and TG analysis. The Schiff base ligands and their metal complexes were tested for antimicrobial activity against Gram positive bacteria Staphylococcus aureus, and Streptococcus pyogenes and Gram negative bacteria Escherichia coli, and Pseudomonas aeruginosa and fungus Candida albicans, Aspergillus niger, and Aspergillus clavatus using Broth Dilution Method.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Ramasamy Jayarajan ◽  
Gnanasambandam Vasuki ◽  
Pillutla Sambasiva Rao

Synthesis, characterization, and antimicrobial activity of tridentate Schiffbase ligands containing pyrazolone moiety (3a and 3b) and their transition metal complexes of VO(II), Cu(II), Fe(III), and Co(II) 4a–h have been investigated. The complexes show enhanced antibacterial activity against S. aureus, E. coli, and S. typhi and antifungal activity against C. albicans, Rhizopus sp., and A. niger compared to the ligands.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ramesh S. Yamgar ◽  
Y. Nivid ◽  
Satish Nalawade ◽  
Mustapha Mandewale ◽  
R. G. Atram ◽  
...  

The synthesis and antimicrobial activity of novel Zn(II) metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z)-{[3-(N-methylamino)propyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E)-{[4-(1H-1,2,4-triazol-1-ylmethyl)phenyl]imino}methyl]phenol, and (4S)-4-{4-[(E)-(2-hydroxybenzylidene)amino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria:E. coliandPseudomonas fluorescens, Gram positive bacteria:Staphylococcus aureus,and also against fungi, that is,C. albicansandA. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL). The “in vitro” data has identified [Zn(NMAPIMHMC)2]·2H2O, [Zn(TMPIMP)2]·2H2O, and [Zn(HBABO)2]·2H2O as potential therapeutic antifungal agents againstC. albicansandA. niger.


Sign in / Sign up

Export Citation Format

Share Document