scholarly journals The Effect of Mould Filling on the Mechanical Properties of Wall Tile Production

2021 ◽  
Vol 13 (3) ◽  
pp. 40-48
Author(s):  
Müge TARHAN ◽  
Baran TARHAN ◽  
Tuna AYDIN
2004 ◽  
Vol 264-268 ◽  
pp. 2457-2460 ◽  
Author(s):  
N. Ediz ◽  
H. Yurdakul ◽  
A. İssi
Keyword(s):  

Author(s):  
O.A. Zarubina ◽  
A.M. Zarubin

To assess the effect of the mould filling modes on the content of oxide films in castings, special criterion is proposed that provides prediction in the contamination of chill castings mаde of aluminum alloys by using modern computing tools to simulate the moulds casting process on computer. It is noted that decrease in the value of the contamination criterion by using alloys with low content of Mg or without this component reduces the possibility of controlling the distribution of oxides in the casting, other elements of the casting mould and using the concentration of oxides, for example, in washers to control the mechanical properties of cast products. This is due to increase in the duration of oxidation processes in gas-tight mould with such change in the composition of the casting material.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fawzia Hamed Basuny ◽  
Mootaz Ghazy ◽  
Abdel-Razik Y. Kandeil ◽  
Mahmoud Ahmed El-Sayed

During the transient phase of filling a casting running system, surface turbulence can cause the entrainment of oxide films into the bulk liquid. Previous research has suggested that the entrained oxide film would have a deleterious effect on the reproducibility of the mechanical properties of Al cast alloys. In this work, the Weibull moduli for the ultimate tensile strength (UTS) and % elongation of sand cast bars produced under different casting conditions were compared as indicators of casting reliability which was expected to be a function of the oxide film content. The results showed that the use of a thin runner along with the use of filters can significantly eliminate the surface turbulence of the melt during mould filling which would lead to the avoidance of the generation and entrainment of surface oxide films and in turn produce castings with more reliable and reproducible mechanical properties compared to the castings produced using conventional running systems.


2013 ◽  
Vol 765 ◽  
pp. 225-229 ◽  
Author(s):  
Yang Yue ◽  
William D. Griffiths ◽  
Nick R. Green

Entrainment defects such as double oxide films and entrapped bubbles occur frequently in aluminium alloy castings during the mould-filling process, and are very detrimental to both mechanical properties, and reproducibility of casting properties. In this study a modelling algorithm was used to predict the formation and distribution of entrainment defects in Al-Si-Mg alloy castings. The tensile strength of cast test bars was compared with either the number of defects, or the defect concentration within the bars obtained from the simulation. A general relationship between the mechanical strength of the cast test bars and the quantity of estimated defects was apparent.


2008 ◽  
Vol 587-588 ◽  
pp. 553-557
Author(s):  
Mariusz Krol ◽  
Marcin Bilewicz ◽  
Júlio C. Viana ◽  
Leszek Adam Dobrzański

This investigation aims at establishing the relationships between the thermomechanical conditions and the mechanical properties of a direct injection moulded polypropylene/polycarbonate blend (70/30wt composition). Rectangular plates (2 mm thick) were injection moulded by systematic variations of the processing conditions. The moulding programme was based on a design of experiments (DOE) approach, being considered variations in two levels of the melt (240 and 280°C) and the mould (5 and 80°C) temperatures and the injection flow rate (3.8 and 38 cm3/s). For comparison purposes, neat polypropylene was also moulded under the same set of processing conditions. In both cases the thermomechanical environment was characterised by computer simulations of the mould filling phase using commercially available codes (Moldflow). Tensile specimens were cut from the injected plates. The microstructure of the mouldings was characterized by polarized light microscopy, PLM. The mechanical characterization encompass the assessment of the tensile (at 5 mm/min at 23 °C) and impact toughness (unnotched Charpy test). The results are analysed by ANOVA. The presence of PC particles affects the crystallization of PP, this being revealed on the mouldings microstructures observed by PLM that are distinct for the neat and PP/PC blends. The mechanical properties are determined differently by the processing variables.


Sign in / Sign up

Export Citation Format

Share Document