Fluids & classical fields in curved spacetime

Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This chapter discusses classical fields in an arbitrary Riemann spacetime. General considerations are followed by the formulation of scalar fields with non-minimal coupling. Spontaneous symmetry breaking in curved space is shown to provide the induced gravity action with a cosmological constant. The construction of spinor fields in curved spacetime is based on the notions of group theory from Part I and on the local Lorentz invariance. Massless vector fields (massless vector gauge fields) are described and the interactions between scalar, fermion and gauge fields formulated. A detailed discussion of classical conformal transformations and conformal symmetry for both matter fields and vacuum action is also provided.


2009 ◽  
Vol 06 (05) ◽  
pp. 805-824 ◽  
Author(s):  
DANIEL CANARUTTO

Fermi transport of spinors can be precisely understood in terms of two-spinor geometry. By using a partly original, previously developed treatment of two-spinors and classical fields, we describe the family of all transports, along a given one-dimensional timelike submanifold of spacetime, which yield the standard Fermi transport of vectors. Moreover, we show that this family has a distinguished member, whose relation to the Fermi transport of vectors is similar to the relation between the spinor connection and spacetime connection. Various properties of the Fermi transport of spinors are discussed, and applied to the construction of free electron states for a detector-dependent QED formalism introduced in a previous paper.


Author(s):  
H. Salzmann ◽  
T. Grundhofer ◽  
H. Hahl ◽  
R. Lowen
Keyword(s):  

2015 ◽  
Vol 8 (1) ◽  
pp. 1976-1981
Author(s):  
Casey McMahon

The principle postulate of general relativity appears to be that curved space or curved spacetime is gravitational, in that mass curves the spacetime around it, and that this curved spacetime acts on mass in a manner we call gravity. Here, I use the theory of special relativity to show that curved spacetime can be non-gravitational, by showing that curve-linear space or curved spacetime can be observed without exerting a gravitational force on mass to induce motion- as well as showing gravity can be observed without spacetime curvature. This is done using the principles of special relativity in accordance with Einstein to satisfy the reader, using a gravitational equivalence model. Curved spacetime may appear to affect the apparent relative position and dimensions of a mass, as well as the relative time experienced by a mass, but it does not exert gravitational force (gravity) on mass. Thus, this paper explains why there appears to be more gravity in the universe than mass to account for it, because gravity is not the resultant of the curvature of spacetime on mass, thus the “dark matter” and “dark energy” we are looking for to explain this excess gravity doesn’t exist.


2009 ◽  
Vol 79 (2) ◽  
Author(s):  
Emilia Witkowska ◽  
Paweł Ziń ◽  
Mariusz Gajda
Keyword(s):  
Bose Gas ◽  

2014 ◽  
Vol 343 ◽  
pp. 40-48 ◽  
Author(s):  
E. Ersin Kangal ◽  
Hilmi Yanar ◽  
Ali Havare ◽  
Kenan Sogut

Sign in / Sign up

Export Citation Format

Share Document