scholarly journals Source mantle, residuum and partial melt compositions deduced from the kimberlite record

Keyword(s):  

Geology ◽  
2000 ◽  
Vol 28 (1) ◽  
pp. 7-10 ◽  
Author(s):  
C. L. Rosenberg ◽  
U. Riller
Keyword(s):  


2018 ◽  
Author(s):  
Evan Davis ◽  
◽  
Natalio Plascencia ◽  
Rachel Teasdale ◽  
Jennifer M. Wenner
Keyword(s):  


1981 ◽  
Vol 19 (3) ◽  
pp. 394 ◽  
Author(s):  
T. J. Shankland ◽  
R. J. O’Connell ◽  
H. S. Waff
Keyword(s):  


2003 ◽  
Vol 153 (2) ◽  
pp. 289-304 ◽  
Author(s):  
Shenghui Li ◽  
Martyn J. Unsworth ◽  
John R. Booker ◽  
Wenbo Wei ◽  
Handong Tan ◽  
...  


Geosphere ◽  
2021 ◽  
Author(s):  
S.J. Seaman ◽  
M.L. Williams ◽  
K.E. Karlstrom ◽  
P.C. Low

Recognition of fundamental tectonic boundaries has been extremely difficult in the (>1000-km-wide) Proterozoic accretionary orogen of southwestern North America, where the main rock types are similar over large areas, and where the region has experienced multiple postaccretionary deformation events. Discrete ultramafic bodies are present in a number of areas that may mark important boundaries, especially if they can be shown to represent tectonic fragments of ophiolite complexes. However, most ultramafic bodies are small and intensely altered, precluding petrogenetic analysis. The 91-Mile peridotite in the Grand Canyon is the largest and best preserved ultramafic body known in the southwest United States. It presents a special opportunity for tectonic analysis that may illuminate the significance of ultramafic rocks in other parts of the orogen. The 91-Mile peridotite exhibits spectacular cumulate layering. Contacts with the surrounding Vishnu Schist are interpreted to be tectonic, except along one margin, where intrusive relations have been interpreted. Assemblages include olivine, clinopyroxene, orthopyroxene, magnetite, and phlogopite, with very rare plagioclase. Textures suggest that phlogopite is the result of late intercumulus crystallization. Whole-rock compositions and especially mineral modes and compositions support derivation from an arc-related mafic magma. K-enriched subduction-related fluid in the mantle wedge is interpreted to have given rise to a K-rich, hydrous, high-pressure partial melt that produced early magnetite, Al-rich diopside, and primary phlogopite. The modes of silicate minerals, all with high Mg#, the sequence of crystallization, and the lack of early plagioclase are all consistent with crystallization at relatively high pressures. Thus, the 91-Mile peridotite body is not an ophiolite fragment that represents the closure of a former ocean basin. It does, however, mark a significant tectonic boundary where lower-crustal arc cumulates have been juxtaposed against middle-crustal schists and granitoids.





Author(s):  
D. J. Witte ◽  
D. S. Pickard ◽  
F. Crnogorac ◽  
P. Pianetta ◽  
R. F. W. Pease


1993 ◽  
Vol 30 (6) ◽  
pp. 1110-1122 ◽  
Author(s):  
G. E. Camiré ◽  
J. N. Ludden ◽  
M. R. La Flèche ◽  
J. -P. Burg

In the northwestern Pontiac Subprovince, metavolcanic rocks are exposed within a metagraywacke sequence that is intruded by metamorphosed mafic dykes. The metavolcanics are Al-undepleted komatiites ([La/Sm]N = 0.3, [Tb/Yb]N = 0.9) and tholeiitic Fe-basalts ([La/Sm]N = 0.8 and [Tb/Yb]N = 0.8). The nearly flat chondrite-normalized distributions of high field strength elements (HFSE), Ti and P, the constant Zr/Y, Nb/Th, Ti/Zr, and Ti/P ratios, and the lack of depletion of HFSE relative to rare-earth elements (REE) in both ultramafic and mafic metavolcanics, imply that crustal assimilation and magma mixing with crustal melts were not significant during differentiation and argue against the presence of subduction-related magmatic components. Contemporaneous volcanism and sedimentation in the northwestern Pontiac Subprovince are unlikely. The metavolcanics do not show any evidence of crustal contamination and likely represent a structurally emplaced, disrupted assemblage, chemically similar to early volcanics of the adjacent southern Abitibi Subprovince.Metamorphosed mafic dykes intruding the metagraywackes are not genetically related to the metavolcanics. The dykes have high CaO, P2O5, K2O, Ba, Rb, and Sr, intermediate Cr and Ni contents, and strongly fractionated REE patterns ([La/Yb]N = 10.8). Normalized to the primitive mantle, they display pronounced negative Nb, Ta, Ti, Zr, and Hf anomalies. These amphibolites are metamorphosed equivalents of Mg-rich calc-alkaline lamprophyre dykes, most likely derived from a hybridized mantle source. Mantle metasomatism was probably related to a subduction event prior to the peak of compressional Kenoran deformation in the Pontiac Subprovince.



Sign in / Sign up

Export Citation Format

Share Document