scholarly journals Solving Differential Equation by Modified Genetic Algorithms

2018 ◽  
Vol 26 (10) ◽  
pp. 233-241
Author(s):  
Eman Ali Hussain ◽  
Yahya Mourad Abdul – Abbass

   Differential equation is a mathematical equation which contains the derivatives of a variable, such as the equation which represent physical quantities, In this paper  we introduced modified on the method which proposes a polynomial to solve the ordinary differential equation (ODEs) of second order and by using the evolutionary algorithm to find the coefficients of the propose a polynomial [1] . Our method propose a polynomial to solve the ordinary differential equations (ODEs) of nth  order and partial differential equations(PDEs) of order two  by using the Genetic algorithm to find the coefficients of the propose a polynomial ,since Evolution Strategies (ESs) use  a string representation of the solution to some problem and attempt to evolve a good solution through a series of fitness –based evolutionary steps .unlike (GA)  ,an ES will typically not use a population of solution but instead will make a sequence of mutations of an individual solution ,using fitness as a guide[2] . A numerical example with good result show the accuracy of our method compared with some existing methods .and the best error of method it’s not much larger than the error in best of the numerical method solutions.

1982 ◽  
Vol 37 (8) ◽  
pp. 830-839 ◽  
Author(s):  
A. Salat

The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f{ω1t, ω2t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω1, ω2, a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained.The equation considered is a model for the magneto-hydrodynamic “continuum” in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently ir-rational magnetic surfaces


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
P. G. L. Leach ◽  
K. S. Govinder ◽  
K. Andriopoulos

Hidden symmetries entered the literature in the late Eighties when it was observed that there could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation. Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry, that is, a symmetry with one or more of the coefficient functions containing an integral. Recent work by Abraham-Shrauner and Govinder (2006) on the reduction of partial differential equations demonstrates that it is possible for these “hidden” symmetries to have a point origin. In this paper we show that the same phenomenon can be observed in the reduction of ordinary differential equations and in a sense loosen the interpretation of hidden symmetries.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Atimad Harir ◽  
Said Melliani ◽  
Lalla Saadia Chadli

In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .


2021 ◽  
Vol 41 (5) ◽  
pp. 685-699
Author(s):  
Ivan Tsyfra

We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.


2021 ◽  
Vol 5 (2) ◽  
pp. 579-583
Author(s):  
Muhammad Abdullahi ◽  
Bashir Sule ◽  
Mustapha Isyaku

This paper is aimed at deriving a 2-point zero stable numerical algorithm of block backward differentiation formula using Taylor series expansion, for solving first order ordinary differential equation. The order and zero stability of the method are investigated and the derived method is found to be zero stable and of order 3. Hence, the method is suitable for solving first order ordinary differential equation. Implementation of the method has been considered


1975 ◽  
Vol 27 (3) ◽  
pp. 508-512
Author(s):  
G. B. Gustafson ◽  
S. Sedziwy

Consider the wth order scalar ordinary differential equationwith pr ∈ C([0, ∞) → R ) . The purpose of this paper is to establish the following:DECOMPOSITION THEOREM. The solution space X of (1.1) has a direct sum Decompositionwhere M1 and M2 are subspaces of X such that(1) each solution in M1\﹛0﹜ is nonzero for sufficiently large t ﹛nono sdilatory) ;(2) each solution in M2 has infinitely many zeros ﹛oscillatory).


1968 ◽  
Vol 20 ◽  
pp. 720-726
Author(s):  
T. G. Hallam ◽  
V. Komkov

The stability of the solutions of an ordinary differential equation will be discussed here. The purpose of this note is to compare the stability results which are valid with respect to a compact set and the stability results valid with respect to an unbounded set. The stability of sets is a generalization of stability in the sense of Liapunov and has been discussed by LaSalle (5; 6), LaSalle and Lefschetz (7, p. 58), and Yoshizawa (8; 9; 10).


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1139
Author(s):  
Claudia Valls

We study equations of the form y d y / d x = P ( x , y ) where P ( x , y ) ∈ R [ x , y ] with degree n in the y-variable. We prove that this ordinary differential equation has at most n polynomial solutions (not necessarily constant but coprime among each other) and this bound is sharp. We also consider polynomial limit cycles and their multiplicity.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhenyu Yang ◽  
Mingge Zhang ◽  
Guojing Liu ◽  
Mingyu Li

The recommendation method based on user sessions is mainly to model sessions as sequences in the assumption that user behaviors are independent and identically distributed, and then to use deep semantic information mining through Deep Neural Networks. Nevertheless, user behaviors may be a nonindependent intention at irregular points in time. For example, users may buy painkillers, books, or clothes for different reasons at different times. However, this has not been taken seriously in previous studies. Therefore, we propose a session recommendation method based on Neural Differential Equations in an attempt to predict user behavior forward or backward from any point in time. We used Ordinary Differential Equations to train the Graph Neural Network and could predict forward or backward at any point in time to model the user's nonindependent sessions. We tested for four real datasets and found that our model achieved the expected results and was superior to the existing session-based recommendations.


1913 ◽  
Vol 32 ◽  
pp. 164-174
Author(s):  
A. Gray

The present paper contains the first part of a series of notes on general dynamics which, if it is found worth while, may be continued. In § 1 I have shown how the first Hamiltonian differential equation is led up to in a natural and elementary manner from the canonical equations of motion for the most general case, that in which the time t appears explicitly in the function usually denoted by H. The condition of constancy of energy is therefore not assumed. In § 2 it is proved that the partial derivatives of the complete integral of Hamilton's equation with respect to the constants which enter into the specification of that integral do not vary with the time, so that these derivatives equated to constants are the integral equations of motion of the system.*


Sign in / Sign up

Export Citation Format

Share Document