scholarly journals Mixed problem for a one-dimensional wave equation with conjugation conditions and second-order derivatives in boundary conditions

Author(s):  
V. I. Korzyuk ◽  
S. N. Naumavets ◽  
V. P. Serikov

In this paper, we consider the boundary problem for the half-strip on the plane for the case of two independent variables. This mixed problem is solved for a one-dimensional wave equation with Cauchy conditions on the basis of the half-strip and boundary conditions for lateral parts of the area border containing second-order derivatives. Moreover, the conjugation conditions are specified for the required function and its derivatives for the case when the homogeneous matching conditions are not satisfied. A classical solution to this problem is found in an analytical form by the characteristics method. This solution is approved to be unique if the relevant conditions are fulfilled.

Author(s):  
V. I. Korzyuk ◽  
S. N. Naumavets ◽  
V. A. Sevastyuk

This paper considers the mixed problem for a one-dimensional wave equation with second-order derivatives at boundary conditions. Using the method of characteristics, a classical solution to this problem is found in analytical form. Its uniqueness is proved under the relevant compatibility conditions.


Author(s):  
V. I. Korzyuk ◽  
J. V. Rudzko

In this article, we study the classical solution of the mixed problem in a quarter of a plane and a half-plane for a one-dimensional wave equation. On the bottom of the boundary, Cauchy conditions are specified, and the second of them has a discontinuity of the first kind at one point. Smooth boundary condition is set at the side boundary. The solution is built using the method of characteristics in an explicit analytical form. Uniqueness is proved and conditions are established under which a piecewise-smooth solution exists. The problem with linking conditions is considered.


Author(s):  
V. I. Korzyuk ◽  
J. V. Rudzko

In this article, we study the classical solution of the mixed problem in a quarter of a plane for a one-dimensional wave equation. On the bottom of the boundary, the Cauchy conditions are specified, and the second of them has a discontinuity of the first kind at a point. The smooth boundary condition is set at the side boundary. The solution is built using the method of characteristics in an explicit analytical form. The uniqueness is proved, and the conditions under which a piecewise-smooth solution exists are established. The problem with conjugate conditions is considered


Author(s):  
Shuguan Ji ◽  
Yong Li

This paper is devoted to the study of time-periodic solutions to the nonlinear one-dimensional wave equation with x-dependent coefficients u(x)ytt – (u(x)yx)x + g(x,t,y) = f(x,t) on (0,π) × ℝ under the periodic boundary conditions y(0,t) = y(π,t), yx(0,t) = yx(π,t) or anti-periodic boundary conditions y(0, t) = –y(π,t), yx[0,t) = – yx(π,t). Such a model arises from the forced vibrations of a non-homogeneous string and the propagation of seismic waves in non-isotropic media. Our main concept is that of the ‘weak solution’. For T, the rational multiple of π, we prove some important properties of the weak solution operator. Based on these properties, the existence and regularity of weak solutions are obtained.


Author(s):  
Angelo Favini ◽  
Ciprian G. Gal ◽  
Gisèle Ruiz Goldstein ◽  
Jerome A. Goldstein ◽  
Silvia Romanelli

We study the problem of the well-posedness for the abstract Cauchy problem associated to the non-autonomous one-dimensional wave equation utt = A(t)u with general Wentzell boundary conditions Here A(t)u := (a(x, t)ux)x, a(x, t) ≥ ε > 0 in [0, 1] × [0, + ∞) and βj(t) > 0, γj(t) ≥ 0, (γ0(t), γ1(t)) ≠ (0,0). Under suitable regularity conditions on a, βj, γj we prove the well-posedness in a suitable (energy) Hilbert space


Author(s):  
V. I. Korzyuk ◽  
I. I. Stolyarchuk

The mixed problem for the one-dimensional Klein – Gordon – Fock type equation with curve derivatives at boundary conditions is considered in the half-strip. The solution of this problem is reduced to solving the second-type Volterra integral equations. Theorems of existence and uniqueness of the solution in the class of twice continuously differentiable functions were proven for these equations when initial functions are smooth enough. It is proven that the fulfillment of the matching conditions on the given functions is necessary and sufficient for the existence of the unique smooth solution when initial functions are smooth enough. The method of characteristics is used for the problem analysis. This method is reduced to splitting the original area of definition to the subdomains. The solution of the subproblem can be constructed in each subdomain with the help of the initial and boundary conditions. Then, the obtained solutions are glued in common points, and the obtained glued conditions are the matching conditions. This approach can be used in constructing as an analytical solution when a solution of the integral equation can be found in an explicit way, so an approximate solution. Moreover, approximate solutions can be constructed in numerical or analytical form. When a numerical solution is built, the matching conditions are essential and they need to be considered while developing numerical methods.


Sign in / Sign up

Export Citation Format

Share Document