scholarly journals Design and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation

Author(s):  
Hamid Reza Ansari ◽  
Saeed Khosroabadi ◽  
Yasser Mafinejad ◽  
◽  
◽  
...  
2018 ◽  
Vol 7 (2.31) ◽  
pp. 4 ◽  
Author(s):  
K Jayavardhani ◽  
S K. Noureen Fathima ◽  
K Bhima Sankar ◽  
K Kavya Sri ◽  
S Sunithamani

This paper presents the design and simulation of RF MEMS shunt capacitive switch with low actuation voltage, low insertion loss and high isolation. Actuation voltage depends on the parameters like air gap, spring constant and actuation area. In this design, we have proposed a serpentine meander structure to reduce the spring constant of the beam thus reducing actuation voltage. The rectangular perforation is used to reduce the squeeze film damping by decreasing the mass of the switch. The proposed switch has attained a low actuation voltage of 4.5V for a displacement of 0.84μm. The air gap between the beam and the dielectric is 1μm. This radio frequency (RF) MEMS shunt switch is designed and simulated using COMSOL Multiphysics 5.2. The RF performance of the shunt switch is analyzed in Ansoft HFSS 13 and the results show that the return loss was about -13.50 dB at 20GHz in the OFF state and -8.5 dB at 18 GHz in the ON state. A high isolation of -36.00 dB was achieved in the OFF state at a frequency of 5GHz and a low insertion loss is obtained. The results show that the switch is suitable for wireless applications operating in the frequency range from 5 to 20GHz. 


2017 ◽  
Vol 24 (1) ◽  
pp. 561-574 ◽  
Author(s):  
Li-Ya Ma ◽  
Anis Nurashikin Nordin ◽  
Norhayati Soin

2011 ◽  
Vol 403-408 ◽  
pp. 5330-5334
Author(s):  
Anesh K. Sharma ◽  
Ashu K. Gautam ◽  
D.V.K. Sastry ◽  
S.G. Singh

As the requirement for the low loss phase shifter increases, so does the development of RF MEMS as a solution. This paper presents the design & simulation of Switched line MEMS phase shifter for Ku band using GaAs substrate. The phase shift can be achieved by varying the lengths in delay path to the reference path for the same phase velocity. The electromagnetic & electromechanical simulations were carried out with various structural parameters to optimize the design. The novelties like low insertion loss, low actuation voltage with distributed actuation pads for DC and RF are used to make the design unique. The EM simulations are carried out using 3D simulator HFSS and a phase shift of 172.6 deg./dB for a total Phase shift of 348.75deg was achieved with return loss of 15.5dB over a frequency band from 16-18 GHz and a phase shift error less than ±2 degree in the 32 states. The electromechanical simulations are carried to achieve the low actuation voltage of 15.3V. These parameters make these suitable for the Phased array applications [1, 2].


Sign in / Sign up

Export Citation Format

Share Document