scholarly journals Exploring the CORDIC Algorithm and Clock-Gating for Power-Efficient Fast Fourier Transform Hardware Architectures

2021 ◽  
Vol 16 (2) ◽  
pp. 1-11
Author(s):  
André Sapper ◽  
Guilherme Paim ◽  
Eduardo Antônio César Da Costa ◽  
Sergio Bampi

This work explores hardware-oriented optimizations for the CORDIC (COordinate Rotation Digital Computer) algorithm investigating the power-efficiency improvements employing N-point Fast Fourier Transform (FFT) hardware architectures. We introduced three hardware-oriented optimizations for the CORDIC: (a) improving the signal extension, (b) removing the angle accumulation and (c) eliminating the redundancies in the iterations, both unnecessary when processing the FFT processing. Fully sequential FFT architectures of 32, 64, 128, and 256 points were synthesized employing ST 65 nm standard cell libraries. The results show up to 38% of power savings on average when using our best CORDIC optimization proposal to the FFT architecture comparing to the explicit multiply-based butterfly version. Moreover, when combining our best CORDIC optimization with the clock-gating technique, the power savings rises to 78.5% on average for N-point FFT.

2019 ◽  
Vol 8 (4) ◽  
pp. 8533-8538

There should be rapid, efficient and simple process for every scenario now a day. To compute the N point DFT, Fast Fourier Transform (FFT) is a productive algorithm. It has great applications in communication, signal and image processing and instrumentation. In the implementation of FFT one of the challenges is the complex multiplications, so to make this process rapid and simple it’s necessary for a multiplier to be fast and power efficient. To tackle this problem Karatsuba sutra and Nikhilam sutra are an efficient method of multiplication in Vedic Mathematics. This paper will present a design methodology of Double Precision Floating Point Fast Fourier Transform (FFT) Processor.The execution time and complexity can be reduced by the algorithm which is there in Vedic.The main aim is to make FFT Processor process rapid and simple by designing a multiplier which is fast and power efficient by using double precision floating point and Vedic Mathematics concepts.


Author(s):  
Mario Garrido ◽  
Fahad Qureshi ◽  
Jarmo Takala ◽  
Oscar Gustafsson

Sign in / Sign up

Export Citation Format

Share Document