scholarly journals Deteksi Pencilan pada Model ARIMA dengan Bayesian Information Criterion (BIC) Termodifikasi

Author(s):  
Selma Yulistiani ◽  
Suliadi Suliadi

Time series data may be affected by special events or circumstances such as promotions, natural disasters, etc. These events can lead to inconsistent observations in the series called outliers. Because outliers can make invalid conclusions, it is important to carry out procedures in detecting outlier effects. In outlier detection there is one type of outlier, namely additive outlier (AO). The process of detecting additive outliers in the ARIMA model can be said as a model selection problem, where the candidate model assumes additive outliers at a certain time. In the selection of models there are criteria that must be considered in order to produce the best model. The good criteria for models selection  can use the Bayesian Information Criterion (BIC) derived by Schwarz (1978). Galeano and Pena (2011) proposed a modified Bayesian Information Criterion for model selection and detect potential outliers. The modified Bayesian Information Criterion for outlier detection will be applied to the data OutStanding Loan PT.Pegadaian Cimahi year 2013-2017. So that the best model is obtained that the model with adding 2 potential outliers with the ARIMA model (1.0,0), that outliers at observations 48, and 58 because it has a minimum BICUP value of 1064.95650.

2019 ◽  
Vol 13 (3) ◽  
pp. 135-144
Author(s):  
Sasmita Hayoto ◽  
Yopi Andry Lesnussa ◽  
Henry W. M. Patty ◽  
Ronald John Djami

The Autoregressive Integrated Moving Average (ARIMA) model is often used to forecast time series data. In the era of globalization, rapidly progressing times, one of them in the field of transportation. The aircraft is one of the transportation that the residents can use to support their activities, both in business and tourism. The objective of the research is to know the forecasting of the number of passengers of airplanes at the arrival gate of Pattimura Ambon International Airport using ARIMA Box-Jenkins method. The best model selection is ARIMA (0, 1, 3) because it has significant parameter value and MSE value is smaller.


2008 ◽  
Vol 06 (04) ◽  
pp. 747-757 ◽  
Author(s):  
DAISUKE TOMINAGA ◽  
KATSUHISA HORIMOTO

Judgment periodicity of biological time series data is important and done widely to find the circadian expression of genes, monthly change of hormones, etc. To keep complete reproducibility of judgment is a problem because popular judgment methods such as curve fitting, Fourier analysis, etc. need judgment criteria determined by analysts considering experimental conditions and results (level, S/N, distribution, etc.) based on their experience. Judgment results are often affected by analysts' subjects. Reproducible criterion determination is therefore strongly needed. We propose introducing the information criterion to replace analysts' criteria. A judgment algorithm by combining Bayesian information criterion (BIC) and discrete Fourier transform (DFT) has been developed and has proved its ability through application to mice microarray data and finding of circadian genes. Our method, named "Piccolo", shows higher sensitivity than the simple DFT (without BIC) method with reproducibility, and can be fully automated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
R. Scott Hacker ◽  
Abdulnasser Hatemi-J

PurposeThe issue of model selection in applied research is of vital importance. Since the true model in such research is not known, which model should be used from among various potential ones is an empirical question. There might exist several competitive models. A typical approach to dealing with this is classic hypothesis testing using an arbitrarily chosen significance level based on the underlying assumption that a true null hypothesis exists. In this paper, the authors investigate how successful the traditional hypothesis testing approach is in determining the correct model for different data generating processes using time series data. An alternative approach based on more formal model selection techniques using an information criterion or cross-validation is also investigated.Design/methodology/approachMonte Carlo simulation experiments on various generating processes are used to look at the response surfaces resulting from hypothesis testing and response surfaces resulting from model selection based on minimizing an information criterion or the leave-one-out cross-validation prediction error.FindingsThe authors find that the minimization of an information criterion can work well for model selection in a time series environment, often performing better than hypothesis-testing strategies. In such an environment, the use of an information criterion can help reduce the number of models for consideration, but the authors recommend the use of other methods also, including hypothesis testing, to determine the appropriateness of a model.Originality/valueThis paper provides an alternative approach for selecting the best potential model among many for time series data. It demonstrates how minimizing an information criterion can be useful for model selection in a time-series environment in comparison to some standard hypothesis testing strategies.


2020 ◽  
Vol 2 (2) ◽  
pp. 454
Author(s):  
Julkifli Purnama ◽  
Ahmad Juliana

Investment in the capital market every manager needs to analyze to make decisions so that the right target to produce profits in accordance with what is expected. For that, we need a way to predict the decisions that will be taken in the future. The research objective is to find the best model and forecasting of the composite stock price index (CSPI). Data analysis technique The ARIMA Model time series data from historical data is the basis for forecasting. Secondary data is the closing price of the JCI on July 16 2018 to July 16 2019 to see how accurate the forecasting is done on the actual data at that time. The results of the study that the best Arima model is Arima 2.1.2 with an R-squared value of 0.014500, Schwarz criterion 10.83497 and Akaike info criterion of 10.77973. Results of forecasting actual data are 6394,609, dynamic forecast 6387,551 selisish -7,05799, statistics forecas 6400,653 difference of 6,043909. For investors or the public can use the ARIMA method to be able to predict or predict the capital market that will occur in the next period.


2020 ◽  
Author(s):  
Sanyaolu Ameye ◽  
Michael Awoleye ◽  
Emmanuel Agogo ◽  
Ette Etuk

BACKGROUND The Coronavirus disease 2019 (COVID-2019) is a global pandemic and Nigeria is not left out in being affected. Though, the disease is just over three months since first case was identified in the country, we present a predictive model to forecast the number of cases expected to be seen in the country in the next 100 days. OBJECTIVE To implement a predictive model in forecasting the near future number of positive cases expected in the country following the present trend METHODS We performed an Auto Regressive Integrated Moving Average (ARIMA) model prediction on the epidemiological data obtained from Nigerian Centre for Disease Control to predict the epidemiological trend of the prevalence and incidence of COVID-2019. RESULTS There were 93 time series data points which lacked stationarity. From our ARIMA model, it is expected that the number of new cases declared per day will keep rising and towards the early September, 2020, Nigeria is expected to have well above sixty thousand confirmed cases. CONCLUSIONS We however believe that as we have more data points our model will be better fine-tuned.


Economies ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 49 ◽  
Author(s):  
Waqar Badshah ◽  
Mehmet Bulut

Only unstructured single-path model selection techniques, i.e., Information Criteria, are used by Bounds test of cointegration for model selection. The aim of this paper was twofold; one was to evaluate the performance of these five routinely used information criteria {Akaike Information Criterion (AIC), Akaike Information Criterion Corrected (AICC), Schwarz/Bayesian Information Criterion (SIC/BIC), Schwarz/Bayesian Information Criterion Corrected (SICC/BICC), and Hannan and Quinn Information Criterion (HQC)} and three structured approaches (Forward Selection, Backward Elimination, and Stepwise) by assessing their size and power properties at different sample sizes based on Monte Carlo simulations, and second was the assessment of the same based on real economic data. The second aim was achieved by the evaluation of the long-run relationship between three pairs of macroeconomic variables, i.e., Energy Consumption and GDP, Oil Price and GDP, and Broad Money and GDP for BRICS (Brazil, Russia, India, China and South Africa) countries using Bounds cointegration test. It was found that information criteria and structured procedures have the same powers for a sample size of 50 or greater. However, BICC and Stepwise are better at small sample sizes. In the light of simulation and real data results, a modified Bounds test with Stepwise model selection procedure may be used as it is strongly theoretically supported and avoids noise in the model selection process.


Transport ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 354-363
Author(s):  
Anna Borucka ◽  
Dariusz Mazurkiewicz ◽  
Eliza Łagowska

Effective planning and optimization of rail transport operations depends on effective and reliable forecasting of demand. The results of transport performance forecasts usually differ from measured values because the mathematical models used are inadequate. In response to this applicative need, we report the results of a study whose goal was to develop, on the basis of historical data, an effective mathematical model of rail passenger transport performance that would allow to make reliable forecasts of future demand for this service. Several models dedicated to this type of empirical data were proposed and selection criteria were established. The models used in the study are: the seasonal naive model, the Exponential Smoothing (ETS) model, the exponential smoothing state space model with Box–Cox transformation, ARMA errors, trigonometric trend and seasonal components (TBATS) model, and the AutoRegressive Integrated Moving Average (ARIMA) model. The proposed time series identification and forecasting methods are dedicated to the processing of time series data with trend and seasonality. Then, the best model was identified and its accuracy and effectiveness were assessed. It was noticed that investigated time series is characterized by strong seasonality and an upward trend. This information is important for planning a development strategy for rail passenger transport, because it shows that additional investments and engagement in the development of both transport infrastructure and superstructure are required to meet the existing demand. Finally, a forecast of transport performance in sequential periods of time was presented. Such forecast may significantly improve the system of scheduling train journeys and determining the level of demand for rolling stock depending on the season and the annual rise in passenger numbers, increasing the effectiveness of management of rail transport.


Sign in / Sign up

Export Citation Format

Share Document