scholarly journals PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DI PINTU KEDATANGAN BANDAR UDARA INTERNASIONAL PATTIMURA AMBON DENGAN MENGGUNAKAN METODE ARIMA BOX-JENKINS

2019 ◽  
Vol 13 (3) ◽  
pp. 135-144
Author(s):  
Sasmita Hayoto ◽  
Yopi Andry Lesnussa ◽  
Henry W. M. Patty ◽  
Ronald John Djami

The Autoregressive Integrated Moving Average (ARIMA) model is often used to forecast time series data. In the era of globalization, rapidly progressing times, one of them in the field of transportation. The aircraft is one of the transportation that the residents can use to support their activities, both in business and tourism. The objective of the research is to know the forecasting of the number of passengers of airplanes at the arrival gate of Pattimura Ambon International Airport using ARIMA Box-Jenkins method. The best model selection is ARIMA (0, 1, 3) because it has significant parameter value and MSE value is smaller.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yi-Hui Pang ◽  
Hong-Bo Wang ◽  
Jian-Jian Zhao ◽  
De-Yong Shang

Hydraulic support plays a key role in ground control of longwall mining. The smart prediction methods of support load are important for achieving intelligent mining. In this paper, the hydraulic support load data is decomposed into trend term, cycle term, and residual term, and it is found that the data has clear trend and period features, which can be called time series data. Based on the autoregression theory and weighted moving average method, the time series model is built to analyze the load data and predict its evolution trend, and the prediction accuracy of the sliding window model, ARIMA (Autoregressive Integrated Moving Average) model, and SARIMA (Seasonal Autoregressive Integrated Moving Average) model to the hydraulic support load under different parameters are evaluated, respectively. The results of single-point and multipoint prediction test with various sliding window values indicate that the sliding window method has no advantage in predicting the trend of the support load. The ARIMA model shows a better short-term trend prediction than the sliding window model. To some extent, increasing the length of the autoregressive term can improve the long-term prediction accuracy of the model, but it also increases the sensitivity of the model to support load fluctuation, and it is still difficult to predict the load trend in one support cycle. The SARIMA model has better prediction results than the sliding window model and the ARIMA model, which reveals the load evolution trend accurately during the whole support cycle. However, there are many external factors affecting the support load, such as overburden properties, hydraulic support moving speed, and worker’s operation. The smarter model of SARIMA considering these factors should be developed to be more suitable in predicting the hydraulic support load.


Author(s):  
Haviluddin Haviluddin ◽  
Ahmad Jawahir

Based on a combination of an autoregressive integrated moving average (ARIMA) and a radial basis function neural network (RBFNN), a time-series forecasting model is proposed. The proposed model has examined using simulated time series data of tourist arrival to Indonesia recently published by BPS Indonesia. The results demonstrate that the proposed RBFNN is more competent in modelling and forecasting time series than an ARIMA model which is indicated by mean square error (MSE) values. Based on the results obtained, RBFNN model is recommended as an alternative to existing method because it has a simple structure and can produce reasonable forecasts.


Author(s):  
Yoesril Ihza Mahendra ◽  
Natalia Damastuti

Prediction of demand for tiger shrimp buyers using data from the company CV. Surya Perdana Benur. The process is carried out with the models in the Autoregressive Integrated Moving Average method. Tiger shrimp is a marine animal that is now widely cultivated by big company in Indonesia. Tiger shrimp has important economic value, so its existence must be maintained as part of Indonesian germplasm. The problem now faced by many tiger shrimp companies is the inadequate availability of goods for consumers. This time series data method is useful for predicting the availability of goods for consumers who want to buy goods at the company CV. Surya Perdana Benur. This time series data method is useful for predicting the availability of goods for consumers who want to buy goods at the company CV. Surya Perdana Benur. Autoregressive (AR), MovingAverage (MA), and Autoregressive Integrated Moving Average (ARIMA) model and will be evaluated through Mean Absolute Percent Error (MAPE). The initial process that will be carried out after the data is processed is model identification, estimation of model parameters, residual inspection, using forecasting models if the model has been fulfilled will be evaluated using MAPE until the results come out 14875.593875 to be able to predict the next buyer demand.


2018 ◽  
Vol 12 (11) ◽  
pp. 181 ◽  
Author(s):  
S. AL Wadi ◽  
Mohammad Almasarweh ◽  
Ahmed Atallah Alsaraireh

Closed price forecasting plays a main rule in finance and economics which has encouraged the researchers to introduce a fit model in forecasting accuracy. The autoregressive integrated moving average (ARIMA) model has developed and implemented in many applications. Therefore, in this article the researchers utilize ARIMA model in predicting the closed time series data which have been collected from Amman Stock Exchange (ASE) from Jan. 2010 to Jan. 2018. As a result this article shows that the ARIMA model has significant results for short-term prediction. Therefore, these results will be helpful for the investments.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


2018 ◽  
Vol 2 (2) ◽  
pp. 49-57
Author(s):  
Dwi Yulianti ◽  
I Made Sumertajaya ◽  
Itasia Dina Sulvianti

Generalized space time autoregressive integrated  moving average (GSTARIMA) model is a time series model of multiple variables with spatial and time linkages (space time). GSTARIMA model is an extension of the space time autoregressive integrated moving average (STARIMA) model with the assumption that each location has unique model parameters, thus GSTARIMA model is more flexible than STARIMA model. The purposes of this research are to determine the best model and predict the time series data of rice price on all provincial capitals of Sumatra island using GSTARIMA model. This research used weekly data of rice price on all provincial capitals of Sumatra island from January 2010 to December 2017. The spatial weights used in this research are the inverse distance and queen contiguity. The modeling result shows that the best model is GSTARIMA (1,1,0) with queen contiguity weighted matrix and has the smallest MAPE value of 1.17817 %.


Author(s):  
Debasis Mithiya ◽  
Lakshmikanta Datta ◽  
Kumarjit Mandal

Oilseeds have been the backbone of India’s agricultural economy since long. Oilseed crops play the second most important role in Indian agricultural economy, next to food grains, in terms of area and production. Oilseeds production in India has increased with time, however, the increasing demand for edible oils necessitated the imports in large quantities, leading to a substantial drain of foreign exchange. The need for addressing this deficit motivated a systematic study of the oilseeds economy to formulate appropriate strategies to bridge the demand-supply gap. In this study, an effort is made to forecast oilseeds production by using Autoregressive Integrated Moving Average (ARIMA) model, which is the most widely used model for forecasting time series. One of the main drawbacks of this model is the presumption of linearity. The Group Method of Data Handling (GMDH) model has also been applied for forecasting the oilseeds production because it contains nonlinear patterns. Both ARIMA and GMDH are mathematical models well-known for time series forecasting. The results obtained by the GMDH are compared with the results of ARIMA model. The comparison of modeling results shows that the GMDH model perform better than the ARIMA model in terms of mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). The experimental results of both models indicate that the GMDH model is a powerful tool to handle the time series data and it provides a promising technique in time series forecasting methods.


The challenging endeavor of a time series forecast model is to predict the future time series data accurately. Traditionally, the fundamental forecasting model in time series analysis is the autoregressive integrated moving average model or the ARIMA model requiring a model identification of a three-component vector which are the autoregressive order, the differencing order, and the moving average order before fitting coefficients of the model via the Box-Jenkins method. A model identification is analyzed via the sample autocorrelation function and the sample partial autocorrelation function which are effective tools for identifying the ARMA order but it is quite difficult for analysts. Even though a likelihood based-method is presented to automate this process by varying the ARIMA order and choosing the best one with the smallest criteria, such as Akaike information criterion. Nevertheless the obtained ARIMA model may not pass the residual diagnostic test. This paper presents the residual neural network model, called the self-identification ResNet-ARIMA order model to automatically learn the ARIMA order from known ARIMA time series data via sample autocorrelation function, the sample partial autocorrelation function and differencing time series images. In this work, the training time series data are randomly simulated and checked for stationary and invertibility properties before they are used. The result order from the model is used to generate and fit the ARIMA model by the Box-Jenkins method for predicting future values. The whole process of the forecasting time series algorithm is called the self-identification ResNet-ARIMA algorithm. The performance of the residual neural network model is evaluated by Precision, Recall and F1-score and is compared with the likelihood basedmethod and ResNET50. In addition, the performance of the forecasting time series algorithm is applied to the real world datasets to ensure the reliability by mean absolute percentage error, symmetric mean absolute percentage error, mean absolute error and root mean square error and this algorithm is confirmed with the residual diagnostic checks by the Ljung-Box test. From the experimental results, the new methodologies of this research outperforms other models in terms of identifying the order and predicting the future values.


2019 ◽  
Vol 2 (2) ◽  
pp. 90
Author(s):  
Harits Ar Rosyid ◽  
Mutyara Whening Aniendya ◽  
Heru Wahyu Herwanto ◽  
Peizhi Shi

The development of Indonesia's imports fluctuate over years. Inability to anticipate such rapid changes can cause economic slump due to inappropriate policy. For instance, recent years imports in rice led to the extermination of rice reserves. The reason is to maintain the market price of rice in Indonesia. To overcome these changes, forecasting the amount of imports should assist the Government in determining the optimum policy. This can be done by utilizing an algorithm to forecast time series data, in this case the amount of imports in the next few months with a high degree of accuracy. This study uses data obtained from the official website of the Indonesian Ministry of Trade. Then, Seasonal Autoregressive Integrated Moving Average (SARIMA) method is applied to forecast the imports. This method is suitable for the interconnected dependent variables, as well as in forecasting seasonal data patterns. The results of the experiment showed that 6-period forecast is the most accurate results compared to forecasting by 16 and 24 periods. The research resulted in the best model, that is ARIMA (0, 1, 3)(0, 1, 1)12 produces forecasting with a MAPE value of 7.210 % or an accuracy rate of 92.790 %. By applying this imports forecast model, the government can have a forward strategic plans such as selectively imports products and carefully decide the amount of the incoming products to Indonesia. Hence, it could maintain or improve the economic condition where local businesses can grow confidently. 


Sign in / Sign up

Export Citation Format

Share Document