scholarly journals Validation of the Omron HBP-9031C blood pressure monitor for clinics and hospitals according to the ANSI/AAMI/ISO 81060-2:2013 protocol

2019 ◽  
Vol 3 (1) ◽  
pp. 043-048
Author(s):  
K Saito ◽  
Y Hishiki ◽  
H Takahashi
2019 ◽  
Vol 2 (3) ◽  
pp. 206-214
Author(s):  
Putri Indes Oktabriani ◽  
Fuad Ughi ◽  
Aulia Arif Iskandar

The continuous blood pressure measurement research is widely known for helpingthe development of ambulatory blood pressure monitoring where it measures blood pressureevery 15 to 30 minutes throughout the day. The cuff is a problem for the patient withAmbulatory Blood Pressure Monitor. It can make a person feel uncomfortable and must staystill when the cuff starts to inflate. It is limiting and disturbing their daily activity when thedevice is starting to measure the blood pressure. Blood pressure measurement without cuff isbeing proposed in this research, called cuff-less blood pressure measurement. It will be based onPhotoplethysmography (PPG) and Electrocardiography (ECG) signal analysis. ECG (Lead 1,Lead 2, and Lead 3) with PPG signal produced from index finger on the left hand are comparedand analyzed. Then the relation of PPG and ECG signal and the optimum location for daily usecan be obtained. The optimum location will be based on the electrode’s position that producedthe optimum ECG lead Signal to measure blood pressure. Based on the result, PPG and ECGsignal have a linear relation with Blood Pressure Measurement and Lead 1 is more stable inproducing the ECG signal. The equation from Lead 1 appeared as one of the optimum equationsfor measuring Systolic Blood Pressure (SBP) or Diastolic Blood Pressure (DBP).


2017 ◽  
Vol 2 (2) ◽  
pp. 34
Author(s):  
TA Popova ◽  
II Prokofiev ◽  
IS Mokrousov ◽  
Valentina Perfilova ◽  
AV Borisov ◽  
...  

Introduction: To study the effects of glufimet, a new derivative of glutamic acid, and phenibut, a derivative of γ-aminobutyric acid (GABA), on cardiac and cerebral mitochondria and endothelial functions in animals following exposure to stress and inducible nitric oxide synthase (iNOS) inhibition. Methods: Rats suspended by their dorsal cervical skin fold for 24 hours served as the immobilization and pain stress model. Arterial blood pressure was determined using a non-invasive blood pressure monitor. Mitochondrial fraction of heart and brain homogenates were isolated by differential centrifugation and analysed for mitochondrial respiration intensity, lipid peroxidation (LPO) and antioxidant enzyme activity using polarographic method. The concentrations of nitric oxide (NO) terminal metabolites were measured using Griess reagent. Hemostasis indices were evaluated. Platelet aggregation was estimated using modified version of the Born method described by Gabbasov et al., 1989. Results: The present study demonstrated that stress leads to an elevated concentration of NO terminal metabolites and LPO products, decreased activity of antioxidant enzymes, reduced mitochondrial respiratory function, and endothelial dysfunction. Inhibition of iNOS by aminoguanidine had a protective effect. Phenibut and glufimet inhibited a rise in stress-induced nitric oxide production. This resulted in enhanced coupling of substrate peroxidation and ATP synthesis. The reduced LPO processes caused by glufimet and phenibut normalized the endothelial function which was proved by the absence of average daily blood pressure (BP) elevation episodes and a significant increase in platelet aggregation level. Conclusion: Glufimet and phenibut restrict the harmful effects of stress on the heart and brain possibly by modulating iNOS activity.


Author(s):  
Chaniaud Noémie ◽  
Métayer Natacha ◽  
Loup-Escande Emilie ◽  
Megalakaki Olga

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Sergio Rico-Martín ◽  
Marisol Sánchez-Bacaicoa ◽  
Julián F. Calderón-García ◽  
Pedro J. Labrador-Gómez ◽  
Jorge M. De Nicolás Jiménez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document