scholarly journals Synthesis, and studying effect of a solvent on the 1H-NMR chemical shifts of 4-Azido-N-(6-chloro-3-pyridazinyl)benzenesulfonamide

2021 ◽  
Vol 26 (3) ◽  
pp. 1-11
Author(s):  
Sadiq Hasan

  The compound 4-Azido-N-(6-chloro-3-pyridazinyl)benzenesulfonamide was synthesized and studied using FTIR, and 1H-NMR . The influence of a solvent on the experimental 1H-NMR chemical shifts of title compound is discussed. Small chemical shift Δδ < 0.1 ppm were observed when switching from DMSO-d6 to CD3OD. Record a marked change in chemical shifts valeues Δδ > 0.3 ppm when transform from high-polar solvents (DMSO-d6,and CD3OD)  to low-polar solvent (CDCl3). The 1H-NMR chemical shifts of C2-H and C6-H were shown to have excellent linear correlation with the dielectric constants of the solvents DMSO-d6, CD3OD,and CDCl3 (r = 0.995). The 1H-NMR chemical shifts of C18-H shows a perfect relationship with solvatochromic parameter β (r = 0.999).

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2290 ◽  
Author(s):  
Saima H. Mari ◽  
Panayiotis C. Varras ◽  
Atia-tul-Wahab ◽  
Iqbal M. Choudhary ◽  
Michael G. Siskos ◽  
...  

Detailed solvent and temperature effects on the experimental 1H-NMR chemical shifts of the natural products chrysophanol (1), emodin (2), and physcion (3) are reported for the investigation of hydrogen bonding, solvation and conformation effects in solution. Very small chemical shift of │Δδ│ < 0.3 ppm and temperature coefficients │Δδ/ΔΤ│ ≤ 2.1 ppb/K were observed in DMSO-d6, acetone-d6 and CDCl3 for the C(1)–OH and C(8)–OH groups which demonstrate that they are involved in a strong intramolecular hydrogen bond. On the contrary, large chemical shift differences of 5.23 ppm at 298 K and Δδ/ΔΤ values in the range of −5.3 to −19.1 ppb/K between DMSO-d6 and CDCl3 were observed for the C(3)–OH group which demonstrate that the solvation state of the hydroxyl proton is a key factor in determining the value of the chemical shift. DFT calculated 1H-NMR chemical shifts, using various functionals and basis sets, the conductor-like polarizable continuum model, and discrete solute-solvent hydrogen bond interactions, were found to be in very good agreement with the experimental 1H-NMR chemical shifts even with computationally less demanding level of theory. The 1H-NMR chemical shifts of the OH groups which participate in intramolecular hydrogen bond are dependent on the conformational state of substituents and, thus, can be used as molecular sensors in conformational analysis. When the X-ray structures of chrysophanol (1), emodin (2), and physcion (3) were used as input geometries, the DFT-calculated 1H-NMR chemical shifts were shown to strongly deviate from the experimental chemical shifts and no functional dependence could be obtained. Comparison of the most important intramolecular data of the DFT calculated and the X-ray structures demonstrate significant differences for distances involving hydrogen atoms, most notably the intramolecular hydrogen bond O–H and C–H bond lengths which deviate by 0.152 tο 0.132 Å and 0.133 to 0.100 Å, respectively, in the two structural methods. Further differences were observed in the conformation of –OH, –CH3, and –OCH3 substituents.


Author(s):  
Abril C. Castro ◽  
David Balcells ◽  
Michal Repisky ◽  
Trygve Helgaker ◽  
Michele Cascella

2020 ◽  
Vol 74 ◽  
pp. 84-89 ◽  
Author(s):  
Oleg I. Gnezdilov ◽  
Oleg N. Antzutkin ◽  
Rustam Gimatdinov ◽  
Andrei Filippov

2020 ◽  
Vol 49 (45) ◽  
pp. 16453-16463 ◽  
Author(s):  
Winn Huynh ◽  
Matthew P. Conley

The origin in deshielding of 29Si NMR chemical shifts in R3Si–X, where X = H, OMe, Cl, OTf, [CH6B11X6], toluene, and OX (OX = surface oxygen), as well as iPr3Si+ and Mes3Si+ were studied using DFT methods.


2012 ◽  
Vol 371 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Nandhibatla V. Sastry ◽  
Nilesh M. Vaghela ◽  
Pradip M. Macwan ◽  
Saurabh S. Soni ◽  
Vinod K. Aswal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document