scholarly journals Effects of Laser Peening Parameters on Plastic Deformation in Aqueous Glycerol Solution as Plasma Confinement Layer

2018 ◽  
Vol 124 (3) ◽  
Author(s):  
Miho Tsuyama ◽  
Naoya Ehara ◽  
Kazuma Yamashita ◽  
Manabu Heya ◽  
Hitoshi Nakano

Author(s):  
Kohei Mizuta ◽  
Miho Tsuyama ◽  
Makoto Takahashi ◽  
Toshiya Shibayanagi ◽  
Hitoshi Nakano

Author(s):  
Ippei Kitawaki ◽  
Manabu Heya ◽  
Hiroyuki Furukawa ◽  
Miho Tsuyama ◽  
Hitoshi Nakano

2017 ◽  
Vol 45 (10) ◽  
pp. 658
Author(s):  
Miho TSUYAMA ◽  
Naoya EHARA ◽  
Kazuma YAMASHITA ◽  
Manabu HEYA ◽  
Hitoshi NAKANO

Author(s):  
J. Temple Black

There are two types of edge defects common to glass knives as typically prepared for microtomy purposes: 1) striations and 2) edge chipping. The former is a function of the free breaking process while edge chipping results from usage or bumping of the edge. Because glass has no well defined planes in its structure, it should be highly resistant to plastic deformation of any sort, including tensile loading. In practice, prevention of microscopic surface flaws is impossible. The surface flaws produce stress concentrations so that tensile strengths in glass are typically 10-20 kpsi and vary only slightly with composition. If glass can be kept in compression, wherein failure is literally unknown (1), it will remain intact for long periods of time. Forces acting on the tool in microtomy produce a resultant force that acts to keep the edge in compression.


Author(s):  
Russell N. A. Cecil ◽  
H. Clarke Anderson

Unfixed proximal tibial epiphyseal growth plates were studied by freeze-etch to confirm the presence of extracellular calcifying matrix vesicles and to determine the substructure of matrix vesicle membranes as compared to plasma and other membranes of intact chondrocytes. Growth plates from 6-10 week old Sprague-Dawley rats were cut into 1x3 mm blocks whose long dimension was oriented either perpendicular or parallel to the long axis of the tibia. Some blocks were fixed at pH 7. 0 in 0. 2M cacodylate - buffered 2. 5% glutaraldehyde for 1 hour at 4ÅC. The blocks were immersed in 30% glycerol solution at 4ÅC for 1 hour, frozen in liquid nitrogen, and then fractured, etched for 2 minutes, and coated with platinum, carbon and 0. 2% Formvar solution. The replicas were cleaned with chromic acid, floated onto Formvar coated grids, and examined with a Phillips EM 300 electron microscope.Fixed and unfixed specimens appeared similar in ultrastructure. Chondrocytes, matrix, and matrix vesicles were identified. In specimens fractured parallel to the long axis of the tibia, the reserve, proliferative, hypertrophic, and calcifying zones could be discerned as described by light and electron microscopy.


Author(s):  
L. Andrew Staehelin

Freeze-etched membranes usually appear as relatively smooth surfaces covered with numerous small particles and a few small holes (Fig. 1). In 1966 Branton (1“) suggested that these surfaces represent split inner mem¬brane faces and not true external membrane surfaces. His theory has now gained wide acceptance partly due to new information obtained from double replicas of freeze-cleaved specimens (2,3) and from freeze-etch experi¬ments with surface labeled membranes (4). While theses studies have fur¬ther substantiated the basic idea of membrane splitting and have shown clearly which membrane faces are complementary to each other, they have left the question open, why the replicated membrane faces usually exhibit con¬siderably fewer holes than particles. According to Branton's theory the number of holes should on the average equal the number of particles. The absence of these holes can be explained in either of two ways: a) it is possible that no holes are formed during the cleaving process e.g. due to plastic deformation (5); b) holes may arise during the cleaving process but remain undetected because of inadequate replication and microscope techniques.


Sign in / Sign up

Export Citation Format

Share Document