scholarly journals Quasiconformal mappings and minimal Martin boundary of $p$-sheeted unlimited covering surfaces of the once punctered Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type

Author(s):  
Hiroaki Masaoka
2019 ◽  
Vol 16 (2) ◽  
pp. 289-300
Author(s):  
Vladimir Zorich

We discuss some open questions of the theory of quasiconformal mappings related to the field of studies of Professor G. D. Suvorov. The present work is dedicated to his memory.


2019 ◽  
Vol 16 (1) ◽  
pp. 141-147
Author(s):  
Vladimir Zorich

The open questions of the theory of quasiconformal mappings that are adjacent to the field of studies of Professor Bogdan Bojarski are discussed.


2020 ◽  
Vol 17 (3) ◽  
pp. 414-436
Author(s):  
Evgeny Sevost'yanov ◽  
Serhii Skvortsov ◽  
Oleksandr Dovhopiatyi

As known, the modulus method is one of the most powerful research tools in the theory of mappings. Distortion of modulus has an important role in the study of conformal and quasiconformal mappings, mappings with bounded and finite distortion, mappings with finite length distortion, etc. In particular, an important fact is the lower distortion of the modulus under mappings. Such relations are called inverse Poletsky inequalities and are one of the main objects of our study. The use of these inequalities is fully justified by the fact that the inverse inequality of Poletsky is a direct (upper) inequality for the inverse mappings, if there exist. If the mapping has a bounded distortion, then the corresponding majorant in inverse Poletsky inequality is equal to the product of the maximum multiplicity of the mapping on its dilatation. For more general classes of mappings, a similar majorant is equal to the sum of the values of outer dilatations over all preimages of the fixed point. It the class of quasiconformal mappings there is no significance between the inverse and direct inequalities of Poletsky, since the upper distortion of the modulus implies the corresponding below distortion and vice versa. The situation significantly changes for mappings with unbounded characteristics, for which the corresponding fact does not hold. The most important case investigated in this paper refers to the situation when the mappings have an unbounded dilatation. The article investigates the local and boundary behavior of mappings with branching that satisfy the inverse inequality of Poletsky with some integrable majorant. It is proved that mappings of this type are logarithmically Holder continuous at each inner point of the domain. Note that the Holder continuity is slightly weaker than the classical Holder continuity, which holds for quasiconformal mappings. Simple examples show that mappings of finite distortion are not Lipschitz continuous even under bounded dilatation. Another subject of research of the article is boundary behavior of mappings. In particular, a continuous extension of the mappings with the inverse Poletsky inequality is obtained. In addition, we obtained the conditions under which the families of these mappings are equicontinuous inside and at the boundary of the domain. Several cases are considered: when the preimage of a fixed continuum under mappings is separated from the boundary, and when the mappings satisfy normalization conditions. The text contains a significant number of examples that demonstrate the novelty and content of the results. In particular, examples of mappings with branching that satisfy the inverse Poletsky inequality, have unbounded characteristics, and for which the statements of the basic theorems are satisfied, are given.


2002 ◽  
Vol 9 (2) ◽  
pp. 367-382
Author(s):  
Z. Samsonia ◽  
L. Zivzivadze

Abstract Doubly-connected and triply-connected domains close to each other in a certain sense are considered. Some questions connected with conformal and quasiconformal mappings of such domains are studied using integral equations.


2020 ◽  
Vol 8 (1) ◽  
pp. 166-181
Author(s):  
Rebekah Jones ◽  
Panu Lahti

AbstractWe prove a duality relation for the moduli of the family of curves connecting two sets and the family of surfaces separating the sets, in the setting of a complete metric space equipped with a doubling measure and supporting a Poincaré inequality. Then we apply this to show that quasiconformal mappings can be characterized by the fact that they quasi-preserve the modulus of certain families of surfaces.


Author(s):  
Tomasz Adamowicz ◽  
María J. González

AbstractWe define Hardy spaces $${\mathcal {H}}^p$$ H p for quasiregular mappings in the plane, and show that for a particular class of these mappings many of the classical properties that hold in the classical setting of analytic mappings still hold. This particular class of quasiregular mappings can be characterised in terms of composition operators when the symbol is quasiconformal. Relations between Carleson measures and Hardy spaces play an important role in the discussion. This program was initiated and developed for Hardy spaces of quasiconformal mappings by Astala and Koskela in 2011 in their paper $${\mathcal {H}}^p$$ H p -theory for Quasiconformal Mappings (Pure Appl Math Q 7(1):19–50, 2011).


2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Alexander I. Bobenko ◽  
Ulrike Bücking

AbstractWe consider the class of compact Riemann surfaces which are ramified coverings of the Riemann sphere $\hat {\mathbb {C}}$ ℂ ̂ . Based on a triangulation of this covering we define discrete (multivalued) harmonic and holomorphic functions. We prove that the corresponding discrete period matrices converge to their continuous counterparts. In order to achieve an error estimate, which is linear in the maximal edge length of the triangles, we suitably adapt the triangulations in a neighborhood of every branch point. Finally, we also prove a convergence result for discrete holomorphic integrals for our adapted triangulations of the ramified covering.


Sign in / Sign up

Export Citation Format

Share Document