scholarly journals Quasiconformal mappings and minimal Martin boundary of p-sheeted unlimited covering surfaces of the complex plane

2005 ◽  
Vol 28 (2) ◽  
pp. 275-279
Author(s):  
Hiroaki Masaoka ◽  
Shigeo Segawa
2019 ◽  
Vol 16 (2) ◽  
pp. 289-300
Author(s):  
Vladimir Zorich

We discuss some open questions of the theory of quasiconformal mappings related to the field of studies of Professor G. D. Suvorov. The present work is dedicated to his memory.


2019 ◽  
Vol 16 (1) ◽  
pp. 141-147
Author(s):  
Vladimir Zorich

The open questions of the theory of quasiconformal mappings that are adjacent to the field of studies of Professor Bogdan Bojarski are discussed.


2020 ◽  
Vol 17 (3) ◽  
pp. 414-436
Author(s):  
Evgeny Sevost'yanov ◽  
Serhii Skvortsov ◽  
Oleksandr Dovhopiatyi

As known, the modulus method is one of the most powerful research tools in the theory of mappings. Distortion of modulus has an important role in the study of conformal and quasiconformal mappings, mappings with bounded and finite distortion, mappings with finite length distortion, etc. In particular, an important fact is the lower distortion of the modulus under mappings. Such relations are called inverse Poletsky inequalities and are one of the main objects of our study. The use of these inequalities is fully justified by the fact that the inverse inequality of Poletsky is a direct (upper) inequality for the inverse mappings, if there exist. If the mapping has a bounded distortion, then the corresponding majorant in inverse Poletsky inequality is equal to the product of the maximum multiplicity of the mapping on its dilatation. For more general classes of mappings, a similar majorant is equal to the sum of the values of outer dilatations over all preimages of the fixed point. It the class of quasiconformal mappings there is no significance between the inverse and direct inequalities of Poletsky, since the upper distortion of the modulus implies the corresponding below distortion and vice versa. The situation significantly changes for mappings with unbounded characteristics, for which the corresponding fact does not hold. The most important case investigated in this paper refers to the situation when the mappings have an unbounded dilatation. The article investigates the local and boundary behavior of mappings with branching that satisfy the inverse inequality of Poletsky with some integrable majorant. It is proved that mappings of this type are logarithmically Holder continuous at each inner point of the domain. Note that the Holder continuity is slightly weaker than the classical Holder continuity, which holds for quasiconformal mappings. Simple examples show that mappings of finite distortion are not Lipschitz continuous even under bounded dilatation. Another subject of research of the article is boundary behavior of mappings. In particular, a continuous extension of the mappings with the inverse Poletsky inequality is obtained. In addition, we obtained the conditions under which the families of these mappings are equicontinuous inside and at the boundary of the domain. Several cases are considered: when the preimage of a fixed continuum under mappings is separated from the boundary, and when the mappings satisfy normalization conditions. The text contains a significant number of examples that demonstrate the novelty and content of the results. In particular, examples of mappings with branching that satisfy the inverse Poletsky inequality, have unbounded characteristics, and for which the statements of the basic theorems are satisfied, are given.


2020 ◽  
Vol 17 (2) ◽  
pp. 256-277
Author(s):  
Ol'ga Veselovska ◽  
Veronika Dostoina

For the derivatives of Chebyshev second-kind polynomials of a complex vafiable, a system of functions biorthogonal with them on closed curves of the complex plane is constructed. Properties of these functions and the conditions of expansion of analytic functions in series in polynomials under consideration are established. The examples of such expansions are given. In addition, we obtain some combinatorial identities of independent interest.


Author(s):  
A. F. Beardon

AbstractThe positive solutions of the equation $$x^y = y^x$$ x y = y x have been discussed for over two centuries. Goldbach found a parametric form for the solutions, and later a connection was made with the classical Lambert function, which was also studied by Euler. Despite the attention given to the real equation $$x^y=y^x$$ x y = y x , the complex equation $$z^w = w^z$$ z w = w z has virtually been ignored in the literature. In this expository paper, we suggest that the problem should not be simply to parametrise the solutions of the equation, but to uniformize it. Explicitly, we construct a pair z(t) and w(t) of functions of a complex variable t that are holomorphic functions of t lying in some region D of the complex plane that satisfy the equation $$z(t)^{w(t)} = w(t)^{z(t)}$$ z ( t ) w ( t ) = w ( t ) z ( t ) for t in D. Moreover, when t is positive these solutions agree with those of $$x^y=y^x$$ x y = y x .


Sign in / Sign up

Export Citation Format

Share Document