scholarly journals Production of Culex pipiens in Stormwater and Combined Sewer Catch Basins

2020 ◽  
Vol 36 (4) ◽  
pp. 249-252
Author(s):  
Alyssa G. Marini ◽  
Brandon A. Lieberthal ◽  
Allison M. Gardner

ABSTRACT Man-made stormwater and sewage infrastructure, particularly roadside catch basins, provides widespread habitats for immature mosquitoes in urban and suburban environments. Historically, throughout much of the USA, stormwater, sewage, and industrial wastewater were conducted together through “combined” sewer systems, discharging a combination of stormwater and wastewater into streams. Within recent decades, many cities have replaced these combined sewers with “stormwater only” systems that separate stormwater from wastewater. The objective of this research was to evaluate the implications of this infrastructure conversion for production of Culex pipiens, a primary vector for West Nile virus. On a weekly basis over 14 wk, 20 catch basins (10 combined sewer and 10 stormwater only) were sampled for mosquito larvae and emerging adults using the dipping collection method and floating emergence traps. Abundance of larval Cx. pipiens was higher in combined sewer compared with stormwater-only catch basins, while to the contrary, abundance of adult Cx. pipiens was lower in combined sewer compared with stormwater-only catch basins. This study is the first to reveal that habitat attractiveness and quality for Cx. pipiens may vary between combined sewer and stormwater-only catch basins, and our results contribute to a growing body of research to inform vector management and urban planning efforts as municipalities consider the environmental and public health implications of conversion from combined sewage management to separation of stormwater and wastewater.

1998 ◽  
Vol 37 (1) ◽  
pp. 269-275 ◽  
Author(s):  
Victoria Plum ◽  
Claus P. Dahl ◽  
Leif Bentsen ◽  
Carsten R. Petersen ◽  
Lis Napstjert ◽  
...  

The Actiflo method is a compact physico-chemical water treatment method. The method has for many years been used in waterworks for the treatment of surface water to produce drinking water, but is now to an increasing extent being used for treating wastewater and combined sewer overflows (CSO). The method works as weighted settling combined with lamella settling. Typical treatment efficiency: suspended solids 85%, COD 60%, Kjeldahl N 18% and total P 85%. The method also permits efficient removal of heavy metals. Krüger has a mobile pilot plant with a capacity of 80-120 m3/h in Scandinavia and a similar pilot plant in the USA. As an Actiflo plant can be started up in less than 15 minutes, it has many applications. Several applications may also be combined, e.g. treatment of overflows during rain and treatment of lake water in the recipient nearby in dry weather. As an alternative to detention basins in combined sewer systems the Actiflo method is often a competitive method.


2020 ◽  
Vol 36 (1) ◽  
pp. 51-54
Author(s):  
Andrea Drago ◽  
Giulia Simonato ◽  
Stefano Vettore ◽  
Simone Martini ◽  
Federica Marcer ◽  
...  

ABSTRACT Aquatain® is an alternative larvicide formulation to the currently used larvicides. Its efficacy can be assessed monitoring emerging adults with a floating device that was recently developed for use in catch basins. In this study, the efficacy of Aquatain in controlling Aedes albopictus and Culex pipiens complex was investigated by comparing the adults emerging from 25 treated catch basins with that of 25 control basins in northeastern Italy. Basins were monitored weekly for 9 times and the efficacy was evaluated using the Mann–Whitney U-test and calculating the inhibition of emergence at each sampling. Aquatain was effective in reducing the number of emerging mosquitoes for both species, but its duration was affected by rainfall. Intensive showers (>10 mm daily) seem to reduce the efficacy of the product, allowing an increase in emerging adults after about 2 wk. This finding suggests that climatic factors should be taken into account to decide the right time for reapplication of Aquatain during routine larval treatments.


1984 ◽  
Vol 16 (8-9) ◽  
pp. 311-325 ◽  
Author(s):  
N B Johansen ◽  
P Harremoës ◽  
M Jensen

Overflow from combined systems constitute an increasing source of pollution of receiving waters, as compared to daily wastewater discharges which undergo treatment to a still higher extent. The receiving water problems from overflows are significant both in a long term scale (mean annual load) and in a short term scale (extreme event load). A method for computation of both annual and extreme load is presented. It is based on historical rain series and the use of a time-area model and simple pollutant mixing model in runoff calculation. Statistical calculations for both mean annual load and extreme events have been applied to the computed overflow series. Based on the computerized method simple manual calculations methods have been developed, resulting in graphs and tables for annual load and extreme load.


1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1295-1304 ◽  
Author(s):  
C. Jefferies

Visible pollution discharged from two combined sewer overflows were studied using passive Trash Trap devices and the UK Water Research Centre Gross Solids Sampler. Relationships are presented for the number of visible solids and the mass of gross solids discharged during an event. The differences in the behaviour of the overflow types are reported on and they are categorised using the Trash Traps.


1999 ◽  
Vol 39 (9) ◽  
pp. 269-276 ◽  
Author(s):  
R. Mehler ◽  
M. W. Ostrowski

Increasingly extended and alternative methods for urban stormwater management have been discussed in Germany and elsewhere. Without question an economically and ecologically sound combination of central and decentral measures will be a concept of the future. Yet, at present the introduction of approaches other than traditional combined sewer systems is restricted due to missing planning tools and technologies. Adding a number of frequently used Best Stormwater Management Practices (BSMP's) has widely extended the applicability of an existing stormwater water balance and pollution load model.


1998 ◽  
Vol 37 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Marie-Christine Gromaire-Mertz ◽  
Ghassan Chebbo ◽  
Mohamed Saad

An experimental urban catchment has been created in the centre of Paris, in order to obtain a description of the pollution of urban wet weather flows at different levels of the combined sewer system, and to estimate the contribution of runoff, waste water and sewer sediments to this pollution. Twenty-two rainfall events were studied from May to October 1996. Dry weather flow was monitored for one week. Roof, street and yard runoff, total flow at the catchment outlet and waste water were analysed for SS, VSS, COD and BOD5, on both total and dissolved fraction. Results show an evolution in the characteristics of wet weather flow from up to downstream: concentrations increase from the catchment entry to the outlet, as well as the proportion of particle-bound pollutants and the part of organic matter. A first evaluation of the different sources of pollution establishes that a major part of wet weather flow pollution originates from inside the combined sewer, probably through erosion of sewer sediments.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 95-100 ◽  
Author(s):  
Robin G. Veldkamp ◽  
Jan B. M. Wiggers

This research is based on CSO emissions from Dutch sewer systems. During the years 1982 to 1989 research was done on several sewer systems, all of them equiped with a single overflow weir. Pollutant emissions were calculated from the measurements, whereby each storm was considered as a single event. Extreme emissions have a detrimental, sometimes even desastrous effect on water quality. Such extreme emissions are the result of heavy storms, giving it a low frequency of occurrence. From the measurements a statistical model was developed enabling the user to forecast extreme waste emissions with a certain return period in a range of 2 to 10 years. Five pollutants are put in the model: BOD, COD, Kjeldahl nitrogen, total phosphate and suspended solids. The model operates with standardized emission values in kg per ha of impervious area. When the model is used in practice the runoff area to the specific overflow under consideration has to be known.


Sign in / Sign up

Export Citation Format

Share Document