Comparison of calcium concentration in scales and vertebral column of a cyprinid from calcium-limited environments in the Lake Victoria Basin, Uganda

Author(s):  
WA Nesbitt ◽  
SB Clarke ◽  
LJ Chapman
Author(s):  
David Lopez-Carr ◽  
Kevin M. Mwenda ◽  
Narcisa G. Pricope ◽  
Phaedon C. Kyriakidis ◽  
Marta M. Jankowska ◽  
...  

2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashley Osborne ◽  
Emilia Manko ◽  
Mika Takeda ◽  
Akira Kaneko ◽  
Wataru Kagaya ◽  
...  

AbstractCharacterising the genomic variation and population dynamics of Plasmodium falciparum parasites in high transmission regions of Sub-Saharan Africa is crucial to the long-term efficacy of regional malaria elimination campaigns and eradication. Whole-genome sequencing (WGS) technologies can contribute towards understanding the epidemiology and structural variation landscape of P. falciparum populations, including those within the Lake Victoria basin, a region of intense transmission. Here we provide a baseline assessment of the genomic diversity of P. falciparum isolates in the Lake region of Kenya, which has sparse genetic data. Lake region isolates are placed within the context of African-wide populations using Illumina WGS data and population genomic analyses. Our analysis revealed that P. falciparum isolates from Lake Victoria form a cluster within the East African parasite population. These isolates also appear to have distinct ancestral origins, containing genome-wide signatures from both Central and East African lineages. Known drug resistance biomarkers were observed at similar frequencies to those of East African parasite populations, including the S160N/T mutation in the pfap2mu gene, which has been associated with delayed clearance by artemisinin-based combination therapy. Overall, our work provides a first assessment of P. falciparum genetic diversity within the Lake Victoria basin, a region targeting malaria elimination.


2018 ◽  
Vol 6 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Ouma George ◽  
Odhiambo G. Duncan ◽  
Musyimi David ◽  
Kwach Johnson

Avocado (Persia americana) is an important world crop. In Kenya, it has become a very important crop but its production is limited by several factors. Studies were conducted in the Lake Victoria Basin counties of Bunyala in Busia, Kisumu, Muhoroni, Nyando and Rachuonyo in western Kenya to investigate the socioeconomic factors affecting Avocado production.  Information were collected from focus group discussions, key informants, individual interviews and secondary sources. Statistical Package for Social Scientist was used to analyze data collected interpreted and reported.  The objectives were to assess how Avocado growers in western Kenya using Agricultural extension services affects the Livelihood of farmers considering their level of education and extension services and the implication it has on their decisions making to invest in Avocado production. There was positive relationship within the participating farmers as relates their level of education, income and availability of extension services that led to high adoption of inputs, choice of rootstocks to grow the crop, varieties chosen, planting, cultural practices harvesting, storage and marketing.


Sign in / Sign up

Export Citation Format

Share Document