scholarly journals Lithium-Ion Battery Capacity Prediction Using Recursive Least Squares with Forgetting Factor

Author(s):  
Z.W. Zhou ◽  
Y.D. Lu ◽  
Y. Huang ◽  
Z.Y. Shi ◽  
X. Li
Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5698
Author(s):  
Ming Li ◽  
Yingjie Zhang ◽  
Zuolei Hu ◽  
Ying Zhang ◽  
Jing Zhang

The lithium-ion battery is the key power source of a hybrid vehicle. Accurate real-time state of charge (SOC) acquisition is the basis of the safe operation of vehicles. In actual conditions, the lithium-ion battery is a complex dynamic system, and it is tough to model it accurately, which leads to the estimation deviation of the battery SOC. Recursive least squares (RLS) algorithm with fixed forgetting factor is widely used in parameter identification, but it lacks sufficient robustness and accuracy when battery charge and discharge conditions change suddenly. In this paper, we proposed an adaptive forgetting factor regression least-squares–extended Kalman filter (AFFRLS–EKF) SOC estimation strategy by designing the forgetting factor of least squares algorithm to improve the accuracy of SOC estimation under the change of battery charge and discharge conditions. The simulation results show that the SOC estimation strategy of the AFFRLS–EKF based on accurate modeling can effectively improve the estimation accuracy of SOC.


Author(s):  
Tao Chen ◽  
Ciwei Gao ◽  
Hongxun Hui ◽  
Qiushi Cui ◽  
Huan Long

Lithium-ion battery-based energy storage systems have been widely utilized in many applications such as transportation electrification and smart grids. As a key health status indicator, battery performance would highly rely on its capacity, which is easily influenced by various electrode formulation parameters within a battery. Due to the strongly coupled electrical, chemical, thermal dynamics, predicting battery capacity, and analysing the local effects of interested parameters within battery is significantly important but challenging. This article proposes an effective data-driven method to achieve effective battery capacity prediction, as well as local effects analysis. The solution is derived by using generalized additive models (GAM) with different interaction terms. Comparison study illustrate that the proposed GAM-based solution is capable of not only performing satisfactory battery capacity predictions but also quantifying the local effects of five important battery electrode formulation parameters as well as their interaction terms. Due to data-driven nature and explainability, the proposed method could benefit battery capacity prediction in an efficient manner and facilitate battery control for many other energy storage system applications.


Energies ◽  
2013 ◽  
Vol 6 (6) ◽  
pp. 3082-3096 ◽  
Author(s):  
Yi Chen ◽  
Qiang Miao ◽  
Bin Zheng ◽  
Shaomin Wu ◽  
Michael Pecht

Sign in / Sign up

Export Citation Format

Share Document