scholarly journals Free vibration analysis of embedded SWCNTs using DQM based on nonlocal Euler-Bernoulli beam theory

Author(s):  
Maria Anna De Rosa ◽  
Maria Lippiello ◽  
Hector Martin ◽  
Francesco Vairo
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Maria Anna De Rosa ◽  
Maria Lippiello

The free vibration response of double-walled carbon nanotubes (DWCNTs) is investigated. The DWCNTs are modelled as two beams, interacting between them through the van der Waals forces, and the nonlocal Euler-Bernoulli beam theory is used. The governing equations of motion are derived using a variational approach and the free frequencies of vibrations are obtained employing two different approaches. In the first method, the two double-walled carbon nanotubes are discretized by means of the so-called “cell discretization method” (CDM) in which each nanotube is reduced to a set of rigid bars linked together by elastic cells. The resulting discrete system takes into account nonlocal effects, constraint elasticities, and the van der Waals forces. The second proposed approach, belonging to the semianalytical methods, is an optimized version of the classical Rayleigh quotient, as proposed originally by Schmidt. The resulting conditions are solved numerically. Numerical examples end the paper, in which the two approaches give lower-upper bounds to the true values, and some comparisons with existing results are offered. Comparisons of the present numerical results with those from the open literature show an excellent agreement.


2015 ◽  
Vol 764-765 ◽  
pp. 1199-1203 ◽  
Author(s):  
Tai Ping Chang

In the present study, nonlinear free vibration behavior of nanobeam subjected to magnetic field is investigated based on Eringen's nonlocal elasticity and Euler–Bernoulli beam theory. The Hamilton's principle is adopted to derive the governing equations together with Euler–Bernoulli beam theory and the von-Kármán's nonlinear strain–displacement relationships. An approximate analytical solution is obtained for the nonlinear frequency of the nanobeam under magnetic field by using the Galerkin method and He's variational method. In the numerical results, the ratio of nonlinear frequency to linear frequency is presented. The effect of nonlocal parameter on the nonlinear frequency ratio is studied; furthermore, the effect of magnetic field on the nonlinear free vibration behavior of nanobeam is investigated.


2013 ◽  
Vol 20 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Gürkan Şcedilakar

In this study, free vibration analysis of beams carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and spring-mass systems subjected to the axial load was performed. All analyses were performed using an Euler beam assumption and the Finite Element Method. The beam used in the analyses is accepted as pinned-pinned. The axial load applied to the beam from the free ends is either compressive or tensile. The effects of parameters such as the number of spring-mass systems on the beam, their locations and the axial load on the natural frequencies were investigated. The mode shapes of beams under axial load were also obtained.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850024 ◽  
Author(s):  
Mostafa Nourifar ◽  
Ali Keyhani ◽  
Ahmad Aftabi Sani

In this paper, the free vibration analysis of non-uniform rotating Euler–Bernoulli beam is carried out. It is assumed that the beam has exponentially decaying circular cross-section. In order to solve the problem, the differential transform method (DTM) is utilized. Based on our knowledge, we claim that the recurrence relation presented herein is an elaborate recurrence relation which has been obtained for ordinary differential equations. Non-dimensional natural frequencies of the beam are obtained and tabulated for different values of the beam parameters such as taper ratio and rotating speed. Furthermore, the finite element method (FEM) is employed to solve the problem. Comparison of the results obtained by DTM and FEM indicates the accuracy of proposed solutions.


Sign in / Sign up

Export Citation Format

Share Document