scholarly journals An Efficient Sleeping Scheduling for Save Energy Consumption in Wireless Sensor Networks

Author(s):  
Shu-Guang Jia ◽  
Li-Peng Lu ◽  
Ling-Dong Su ◽  
Gui-Lan Xing ◽  
Ming-Yue Zhai
2013 ◽  
Vol 756-759 ◽  
pp. 2288-2293
Author(s):  
Shu Guang Jia ◽  
Li Peng Lu ◽  
Ling Dong Su ◽  
Gui Lan Xing ◽  
Ming Yue Zhai

Smart grid has become one hot topic at home and abroad in recent years. Wireless Sensor Networks (WSNs) has applied to lots of fields of smart grid, such as monitoring and controlling. We should ensure that there are enough active sensors to satisfy the service request. But, the sensor nodes have limited battery energy, so, how to reduce energy consumption in WSNs is a key challenging. Based on this problem, we propose a sleeping scheduling model. In this model, firstly, the sensor nodes round robin is used to let as little as possible active nodes while all the targets in the power grid are monitored; Secondly, for removing the redundant active nodes, the sensor nodes round robin is further optimized. Simulation result indicates that this sleep mechanism can save the energy consumption of every sensor node.


2010 ◽  
Vol 159 ◽  
pp. 733-738 ◽  
Author(s):  
Yuan Yuan Li

The wireless sensor networks have been extensively deployed and researched. One of the major issues in wireless sensor networks is the energy consumption program. In this paper, we analyzed the development status of wireless sensor networks and the problems,while proposed the network structure and energy model,then we discussed the energy saving strategies for wireless sensor networks from four aspects:First analysis the component of WSN protocol stack and the energy consumption;Second,we study the energy-saving strategy for a single node from the computing subsystem and the communication subsystem,and we introduce a new long-sleeping status to save energy through using Flag mark.Third is the energy-saving optimization strategy based on communication protocol which mainly discuss from MAC and routing protocols.Last,we discuss the topology control strategy for energy-saving and point out the importance of topology control technology. Use these strategies, we can significantly reduce the energy consumption of wireless sensor networks and extend the network life-cycle.


2017 ◽  
Vol 12 (2) ◽  
pp. 3167-3178
Author(s):  
Yasser Kareem AlRikabi

Extending the lifetime of the energy constrained wireless sensor networks is a crucial challenge in wireless sensor networks (WSNs) research. When designing a WSN infrastructure Resource limitations have to be taken into account. The inherent problem in WSNs is unbalanced energy consumption, characterized by multi hop routing and a many-to-one traffic pattern. This uneven energy dissipation can significantly reduce network lifetime. This paper proposes a new routing method for WSNs to extend network lifetime using a combination of a fuzzy approach and Biogeography Based Optimization (BBO) algorithm which is capable of finding the optimal routing path form the source to the destination by favoring some of routing criteria and balancing among them to prolong the network lifetime. To demonstrate the effectiveness of the proposed method in terms of balancing energy consumption and maximization of network lifetime, we compare our approach with the BBO search algorithm and fuzzy approach using the same routing criteria. Simulation results demonstrate that the network lifetime achieved by the proposed method could be increased by nearly 25% more than that obtained by the BBO algorithm and by nearly 20% more than that obtained by the fuzzy approach.


2020 ◽  
pp. 105-124
Author(s):  
Mekkaoui Kheireddine ◽  
Rahmoune Abdellatif

In wireless sensor networks, nodes have a low computing capacity, a small antenna and a very limited energy source; thereby batteries are considered as a critical resource and should be used efficiently. On the other hand, the antennas are the biggest consumers of energy, therefore, and their use must be very efficient to minimize energy consumption. In a dense WSN, each node may route messages to destination nodes either through short-hops or long-hops, by using a short or a long radio range. Thus, the hop length optimization can save energy. In this article, the authors propose a theorem to optimize the hop lengths and a routing algorithm to improve the WSN power consumption. The theorem establishes a simple condition to ensure the optimal hop lengths which guarantees the minimum energy consumption. And the proposed algorithm based on that condition is used to find the optimal routing path. The simulation results are obtained by applying the condition and the algorithm on WSNs and reveals a high performance regarding WSNs energy consumption and network lifetime.


2018 ◽  
Vol 9 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Mekkaoui Kheireddine ◽  
Rahmoune Abdellatif

In wireless sensor networks, nodes have a low computing capacity, a small antenna and a very limited energy source; thereby batteries are considered as a critical resource and should be used efficiently. On the other hand, the antennas are the biggest consumers of energy, therefore, and their use must be very efficient to minimize energy consumption. In a dense WSN, each node may route messages to destination nodes either through short-hops or long-hops, by using a short or a long radio range. Thus, the hop length optimization can save energy. In this article, the authors propose a theorem to optimize the hop lengths and a routing algorithm to improve the WSN power consumption. The theorem establishes a simple condition to ensure the optimal hop lengths which guarantees the minimum energy consumption. And the proposed algorithm based on that condition is used to find the optimal routing path. The simulation results are obtained by applying the condition and the algorithm on WSNs and reveals a high performance regarding WSNs energy consumption and network lifetime.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


Sign in / Sign up

Export Citation Format

Share Document