scholarly journals Seasonal variations of terrestrial Dissolved Organic Carbon loading in response to rainfall events

Author(s):  
Huijiao Qiao ◽  
Jian Xu ◽  
Jilin Yan
2011 ◽  
Vol 10 (11) ◽  
pp. 1733-1742 ◽  
Author(s):  
Hassimi Abu Hasan ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Siti Kartom Kamarudin ◽  
Noorhisham Tan Kofli

2008 ◽  
Vol 79 (2) ◽  
pp. 307-316 ◽  
Author(s):  
Melanie Beck ◽  
Olaf Dellwig ◽  
Gerd Liebezeit ◽  
Bernhard Schnetger ◽  
Hans-Jürgen Brumsack

2014 ◽  
Vol 26 (4) ◽  
pp. 552-558 ◽  
Author(s):  
WANG Xiujun ◽  
◽  
FANG Chuanling ◽  
YU Zhitong ◽  
WANG Jiaping ◽  
...  

2015 ◽  
Vol 12 (1) ◽  
pp. 269-279 ◽  
Author(s):  
A. Kubo ◽  
M. Yamamoto-Kawai ◽  
J. Kanda

Abstract. Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC) and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay. On average, recalcitrant DOC (RDOC), as a remnant of DOC after 150 days of bottle incubation, accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP) effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. Bioavailable DOC (BDOC) concentrations, defined as DOC minus RDOC, were lower than RDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than in autumn and winter because of freshwater input and biological production. The relative concentration of RDOC in the bay derived from phytoplankton, terrestrial, and open-oceanic waters was estimated to be 8–10, 21–32, and 59–69%, respectively, based on multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33 and 74% at freshwater sites and 39 and 76% in Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of STP effluent entering the system. Tokyo Bay exported mostly RDOC to the open ocean because of the remineralization of BDOC.


2017 ◽  
Vol 14 (7) ◽  
pp. 1793-1809 ◽  
Author(s):  
Amy E. Pickard ◽  
Kate V. Heal ◽  
Andrew R. McLeod ◽  
Kerry J. Dinsmore

Abstract. Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input–output along the source to sea aquatic pathway is required to determine the fate of peatland carbon.


Sign in / Sign up

Export Citation Format

Share Document