scholarly journals Seasonal variations and sources of particulate and dissolved organic carbon in Lake Bosten, Xinjiang Province

2014 ◽  
Vol 26 (4) ◽  
pp. 552-558 ◽  
Author(s):  
WANG Xiujun ◽  
◽  
FANG Chuanling ◽  
YU Zhitong ◽  
WANG Jiaping ◽  
...  
2008 ◽  
Vol 79 (2) ◽  
pp. 307-316 ◽  
Author(s):  
Melanie Beck ◽  
Olaf Dellwig ◽  
Gerd Liebezeit ◽  
Bernhard Schnetger ◽  
Hans-Jürgen Brumsack

2015 ◽  
Vol 12 (1) ◽  
pp. 269-279 ◽  
Author(s):  
A. Kubo ◽  
M. Yamamoto-Kawai ◽  
J. Kanda

Abstract. Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC) and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay. On average, recalcitrant DOC (RDOC), as a remnant of DOC after 150 days of bottle incubation, accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP) effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. Bioavailable DOC (BDOC) concentrations, defined as DOC minus RDOC, were lower than RDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than in autumn and winter because of freshwater input and biological production. The relative concentration of RDOC in the bay derived from phytoplankton, terrestrial, and open-oceanic waters was estimated to be 8–10, 21–32, and 59–69%, respectively, based on multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33 and 74% at freshwater sites and 39 and 76% in Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of STP effluent entering the system. Tokyo Bay exported mostly RDOC to the open ocean because of the remineralization of BDOC.


2006 ◽  
Vol 101 (3-4) ◽  
pp. 166-179 ◽  
Author(s):  
Elizabeth C. Minor ◽  
Jean-Paul Simjouw ◽  
Margaret R. Mulholland

Author(s):  
Tomasz Joniak

Seasonal variations of dominant phytoplankton in humic forest lakesThis work presents the community composition, abundance and seasonal dominance of phytoplankton taxa in three hydrochemically different, mid-forest humic lakes. The largest number of taxa was observed in the oligohumic lake (76), with smaller numbers seen in the mesohumic (42) and polyhumic lakes (37), which were characterized by higher contents of dissolved humic substances carbon (DHSC). Along an increasing gradient of DHSC in a pool of dissolved organic carbon (DOC) the autotrophic algae were seen to disappear, being replaced by taxa with features of facultative heterotrophs and flagellated algae that are able to move in the water column.


2014 ◽  
Vol 11 (7) ◽  
pp. 10203-10228 ◽  
Author(s):  
A. Kubo ◽  
M. Yamamoto-Kawai ◽  
J. Kanda

Abstract. Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC) and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay to evaluate the significance of DOC degradation for the carbon budget in coastal waters and carbon export to the open ocean. Recalcitrant DOC (RDOC) was differentiated from bioavailable DOC (BDOC) as a remnant of DOC after 150 days of bottle incubation. On average, RDOC accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP) effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. RDOC concentrations were higher than BDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than during autumn and winter. The relative abundance of RDOC in the bay derived from phytoplankton, terrestrial, and open oceanic waters was estimated to be 9%, 33%, and 58%, respectively, by multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33% and 74% at freshwater sites and 39% and 76% at Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of sewage treatment plant effluent entering the system. Tokyo Bay exported DOC, mostly RDOC, to the open ocean because of remineralization of BDOC.


Sign in / Sign up

Export Citation Format

Share Document