2019 ◽  
Vol 104 (2-3) ◽  
pp. 673-692 ◽  
Author(s):  
G. K. Giannakopoulos ◽  
C. E. Frouzakis ◽  
P. F. Fischer ◽  
A. G. Tomboulides ◽  
K. Boulouchos

2020 ◽  
Vol 103 (3) ◽  
pp. 003685042093573
Author(s):  
Huichao Shang ◽  
Li Zhang ◽  
Bin Chen ◽  
Xi Chen

Due to the enormous energy densities of liquid hydrocarbon fuels for future utilization on micro scale, there is a concern about the feasibility of scaling down reciprocating internal combustion engines from small scale to meso scale. By building a specialized test bench, the performance and combustion characteristics of a miniature internal combustion engine with a displacement of 0.99 cc were tested, and the thermodynamic simulation was carried out to achieve a more complete understanding of in-cylinder mass and energy change of the miniature internal combustion engine. The miniature internal combustion engine had higher brake-specific fuel consumption, lower thermal efficiency, lower brake mean effective pressure, and serious cyclic variation; however, friction mean effective pressure seems to be less sensitive to engine speed. Simulation results showed that the miniature internal combustion engine had a poor volumetric efficiency, which was not more than 50%. The step-by-step processes of scaling down the miniature internal combustion engine were also simulated; it was found that the maximum indicated mean effective pressure loss was due to the imperfection of gas exchange processes, and the next was the imperfection of combustion. It is considered that for the scaled-down miniature internal combustion engines, more attention should be pay on improving the processes of gas exchange and combustion, and achieving meso-scale internal combustion engines with cylinder bore less than 1 mm is thermodynamically possible in future if these imperfections, especially that of the gas exchange process, can be effectively perfected.


1979 ◽  
Author(s):  
P. A. Lakshminarayanan ◽  
P. A. Janakiraman ◽  
M. K. Gajendra Babu ◽  
B. S. Murthy

2021 ◽  
Vol 264 ◽  
pp. 01003
Author(s):  
Zakirjon Musabekov ◽  
Jamshid Khakimov ◽  
Ergashev Botir

Considering the unsteadiness of the flow in the valve channels and windows of the internal combustion engine in combination with limiting the maximum flow rate allows you to take into account the flow characteristics in the exhaust systems of forced engines. Thus, the calculation according to the above method allows us to obtain by calculation, observed in experiments, the reverse pressure drop in the short period of the end of the free release, the validity of using a modified 0-dimensional model of gas exchange, even for engines with long manifolds, where the Strophe number is less than 8.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Sign in / Sign up

Export Citation Format

Share Document