scholarly journals The Application Research with Particle Swarm Bacterial Foraging Intelligent Algorithm in Ship Collision Avoidance

Author(s):  
Hongdan Liu ◽  
Sheng Liu ◽  
Lanyong Zhang ◽  
Zhenguo Gao
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jinxin Li ◽  
Hongbo Wang ◽  
Wei Zhao ◽  
Yuanyuan Xue

With vigorous development of the maritime trade, many intelligent algorithms have been proposed to avoid collisions due to resulting casualties and increased costs. According to the international regulations for preventing collisions at sea (COLREGs) and the self-evolution ability of the intelligent algorithm, the collision avoidance trajectory can be more consistent with the requirements of reality and maritime personnel. In this paper, the optimization of ship collision avoidance strategies is realized by both an improved multiobjective optimization algorithm NSGA-II and the ship domain under the condition of a wide sea area without any external disturbances. By balancing the safety and economy of ship collision avoidance, the avoidance angle and the time to the action point are used as the variables encoded by the algorithm, and the fuzzy ship domain is used to calculate the collision avoidance risk to achieve collision avoidance. The simulation results show that the proposed method can optimize the ship collision avoidance strategy and provide a reasonable scheme for ship navigation.


2021 ◽  
Vol 2021 ◽  
pp. 1-31
Author(s):  
Yisong Zheng ◽  
Xiuguo Zhang ◽  
Zijing Shang ◽  
Siyu Guo ◽  
Yiquan Du

In the process of ship collision avoidance decision making, steering collision avoidance is the most frequently adopted collision avoidance method. In order to obtain an effective and reasonable steering angle, this paper proposes a decision-making method for ship collision avoidance based on improved cultural particle swarm. Firstly, the ship steering angle direction is to be determined. In this stage, the Kalman filter is used to predict the ship’s trajectory. According to the prediction parameters, the collision risk index of the ship is calculated and the situation with the most dangerous ship is judged. Then, the steering angle direction of the ship is determined by considering the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs). Secondly, the ship steering angle is to be calculated. In this stage, the cultural particle swarm optimization algorithm is improved by introducing the index of population premature convergence degree to adaptively adjust the inertia weight of the cultural particle swarm so as to avoid the algorithm falling into premature convergence state. The improved cultural particle swarm optimization algorithm is used to find the optimal steering angle within the range of the steering angle direction. Compared with other evolutionary algorithms, the improved cultural particle swarm optimization algorithm has better global convergence. The convergence speed and stability are also significantly improved. Thirdly, the ship steering angle direction decision method in the first stage and the ship steering angle decision method in the second stage are integrated into the electronic chart platform to verify the effectiveness of the decision-making method of ship collision avoidance presented in this paper. Results show that the proposed approach can automatically realize collision avoidance from all other ships and it has an important practical application value.


Sign in / Sign up

Export Citation Format

Share Document