scholarly journals Artificial Neural Network for Rainfall Prediction Base on Historical Rainfall Data by Day

Author(s):  
Nisha Thakur ◽  
Sanjeev Karmakar ◽  
Sunita Soni

The present review reports the work done by the various authors towards rainfall forecasting using the different techniques within Artificial Neural Network concepts. Back-Propagation, Auto-Regressive Moving Average (ARIMA), ANN , K- Nearest Neighbourhood (K-NN), Hybrid model (Wavelet-ANN), Hybrid Wavelet-NARX model, Rainfall-runoff models, (Two-stage optimization technique), Adaptive Basis Function Neural Network (ABFNN), Multilayer perceptron, etc., algorithms/technologies were reviewed. A tabular representation was used to compare the above-mentioned technologies for rainfall predictions. In most of the articles, training and testing, accuracy was found more than 95%. The rainfall prediction done using the ANN techniques was found much superior to the other techniques like Numerical Weather Prediction (NWP) and Statistical Method because of the non-linear and complex physical conditions affecting the occurrence of rainfall.


Author(s):  
Sanjeev Karmakar ◽  
Manoj Kumar Kowar ◽  
Pulak Guhathakurta

The objective of this study is to expand and evaluate the back-propagation artificial neural network (BPANN) and to apply in the identification of internal dynamics of very high dynamic system such long-range total rainfall data time series. This objective is considered via comprehensive review of literature (1978-2011). It is found that, detail of discussion concerning the architecture of ANN for the same is rarely visible in the literature; however various applications of ANN are available. The detail architecture of BPANN with its parameters, i.e., learning rate, number of hidden layers, number of neurons in hidden layers, number of input vectors in input layer, initial and optimized weights etc., designed learning algorithm, observations of local and global minima, and results have been discussed. It is observed that obtaining global minima is almost complicated and always a temporal nervousness. However, achievement of global minima for the period of the training has been discussed. It is found that, the application of the BPANN on identification for internal dynamics and prediction for the long-range total annual rainfall has produced good results. The results are explained through the strong association between rainfall predictors i.e., climate parameter (independent parameter) and total annual rainfall (dependent parameter) are presented in this paper as well.


J ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 65-83 ◽  
Author(s):  
Duong Tran Anh ◽  
Thanh Duc Dang ◽  
Song Pham Van

Rainfall prediction is a fundamental process in providing inputs for climate impact studies and hydrological process assessments. Rainfall events are, however, a complicated phenomenon and continues to be a challenge in forecasting. This paper introduces novel hybrid models for monthly rainfall prediction in which we combined two pre-processing methods (Seasonal Decomposition and Discrete Wavelet Transform) and two feed-forward neural networks (Artificial Neural Network and Seasonal Artificial Neural Network). In detail, observed monthly rainfall time series at the Ca Mau hydrological station in Vietnam were decomposed by using the two pre-processing data methods applied to five sub-signals at four levels by wavelet analysis, and three sub-sets by seasonal decomposition. After that, the processed data were used to feed the feed-forward Neural Network (ANN) and Seasonal Artificial Neural Network (SANN) rainfall prediction models. For model evaluations, the anticipated models were compared with the traditional Genetic Algorithm and Simulated Annealing algorithm (GA-SA) supported by Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA). Results showed both the wavelet transform and seasonal decomposition methods combined with the SANN model could satisfactorily simulate non-stationary and non-linear time series-related problems such as rainfall prediction, but wavelet transform along with SANN provided the most accurately predicted monthly rainfall.


Sign in / Sign up

Export Citation Format

Share Document