scholarly journals Rainfall Forecasting Using Various Artificial Neural Network Techniques - A Review

Author(s):  
Nisha Thakur ◽  
Sanjeev Karmakar ◽  
Sunita Soni

The present review reports the work done by the various authors towards rainfall forecasting using the different techniques within Artificial Neural Network concepts. Back-Propagation, Auto-Regressive Moving Average (ARIMA), ANN , K- Nearest Neighbourhood (K-NN), Hybrid model (Wavelet-ANN), Hybrid Wavelet-NARX model, Rainfall-runoff models, (Two-stage optimization technique), Adaptive Basis Function Neural Network (ABFNN), Multilayer perceptron, etc., algorithms/technologies were reviewed. A tabular representation was used to compare the above-mentioned technologies for rainfall predictions. In most of the articles, training and testing, accuracy was found more than 95%. The rainfall prediction done using the ANN techniques was found much superior to the other techniques like Numerical Weather Prediction (NWP) and Statistical Method because of the non-linear and complex physical conditions affecting the occurrence of rainfall.

2019 ◽  
Vol 269 ◽  
pp. 04004
Author(s):  
Fuad Mahfudianto ◽  
Eakkachai Warinsiriruk ◽  
Sutep Joy-A-Ka

A method for optimizing monitoring by using Artificial Neural Network (ANN) technique was proposed based on instability of arc voltage signal and welding current signal of solid wire electrode (GMAW). This technique is not only for effective process modeling, but also to illustrate the correlation between the input and output parameters responses. The algorithms of monitoring were developed in time domain by carrying out the Moving Average (M.A) and Root Mean Square (RMS) based on the welding experiment parameters such as travel speed, thickness of specimen, feeding speed, and wire electrode diameter to detect and estimate with a satisfactory sample size. Experiment data was divided into three subsets: train (70%), validation (15%), and test (15%). Error back-propagation of Levenberg-Marquardt algorithm was used to train for this algorithm. The proposed algorithms on this paper were used to estimate the variety the Contact Tip to Work Distance (CTWD) through Mean Square Error (MSE). Based on the results, the algorithms have shown that be able to detect changes in CTWD automatically and real time with takes 0.147 seconds (MSE 0.0087).


Author(s):  
Saboor Ahmad Kakar ◽  
Naveed Sheikh ◽  
Adnan Naseem ◽  
Saleem Iqbal ◽  
Abdul Rehman ◽  
...  

J ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 65-83 ◽  
Author(s):  
Duong Tran Anh ◽  
Thanh Duc Dang ◽  
Song Pham Van

Rainfall prediction is a fundamental process in providing inputs for climate impact studies and hydrological process assessments. Rainfall events are, however, a complicated phenomenon and continues to be a challenge in forecasting. This paper introduces novel hybrid models for monthly rainfall prediction in which we combined two pre-processing methods (Seasonal Decomposition and Discrete Wavelet Transform) and two feed-forward neural networks (Artificial Neural Network and Seasonal Artificial Neural Network). In detail, observed monthly rainfall time series at the Ca Mau hydrological station in Vietnam were decomposed by using the two pre-processing data methods applied to five sub-signals at four levels by wavelet analysis, and three sub-sets by seasonal decomposition. After that, the processed data were used to feed the feed-forward Neural Network (ANN) and Seasonal Artificial Neural Network (SANN) rainfall prediction models. For model evaluations, the anticipated models were compared with the traditional Genetic Algorithm and Simulated Annealing algorithm (GA-SA) supported by Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA). Results showed both the wavelet transform and seasonal decomposition methods combined with the SANN model could satisfactorily simulate non-stationary and non-linear time series-related problems such as rainfall prediction, but wavelet transform along with SANN provided the most accurately predicted monthly rainfall.


The Winners ◽  
2008 ◽  
Vol 9 (2) ◽  
pp. 112
Author(s):  
Harjum Muharam ◽  
Muhammad Panji

This paper discusses technical analysis widely used by investors. There are many methods that exist and used by investor to predict the future value of a stock. In this paper we start from finding the value of Hurst (H) exponent of LQ 45 Index to know the form of the Index. From H value, we could determinate that the time series data is purely random, or ergodic and ant persistent, or persistent to a certain trend. Two prediction tools were chosen, ARIMA (Auto Regressive Integrated Moving Average) which is the de facto standard for univariate prediction model in econometrics and Artificial Neural Network (ANN) Back Propagation. Data left from ARIMA is used as an input for both methods. We compared prediction error from each method to determine which method is better. The result shows that LQ45 Index is persistent to a certain trend therefore predictable and for outputted sample data ARIMA outperforms ANN.


2021 ◽  
Vol 32 (4) ◽  
pp. 1-11
Author(s):  
Roohul Abad Khan ◽  
Rachida El Morabet ◽  
Javed Mallick ◽  
Mohammed Azam ◽  
Viola Vambol ◽  
...  

Rainfall prediction using Artificial Intelligence technique is gaining attention nowadays. Semi-arid region receives rainfall below potential evapotranspiration but more than arid region. However, in mountainous semi-arid region high rainfall intensity makes it highly variable. This renders rainfall prediction difficult by applying normal techniques and calls for data pre-processing. This study presents rainfall prediction in semi-arid mountainous region of Abha, KSA. The study adopted Moving Average (Method) for data pre-processing based on 2 years, 3 years, 4 years, 5 years and 10 years. The Artificial Neural Network (ANN) was trained for a period of 1978-2016 rainfall data. The neural network was validated against the existing data of period 1997-2006. The trained neural network was used to predict for period of 2017-2025. The performance of the model was evaluated against AAE, MAE, RMSE, MASE and PP. The mean absolute error was observed least in 2 years moving average model. However, the most accurate prediction models were obtained from 2 years moving average and 5 year moving average. The study concludes that ANN coupled with MA have potential of predicting rainfall in Semi-Arid mountainous region.


Author(s):  
Pooja Yadav ◽  
Atish Sagar

Rainfall prediction is clearly of great importance for any country. One would like to make long term prediction, i.e. predict total monsoon rainfall a few weeks or months and in advance short term prediction, i.e. predict rainfall over different locations a few days in advance [1]. Predicted by using its correlation with observed parameter. Several regression and neural network based models are currently available. While Artificial Neural Network provide a great deal of promise, they also embody much uncertainty [2,3]. In this paper, different artificial neural network models have been created for the rainfall prediction of Uttarakhand region in India. These ANN models were created using training algorithms namely, feed-forward back propagation algorithm [4,5]. The number of neurons for all the models was kept at 10. The mean squared error was measured for each model and the best accuracy was obtained by the feed-forward back propagation algorithm with MSE value as low as 0.00547823.


2010 ◽  
Vol 39 ◽  
pp. 555-561 ◽  
Author(s):  
Qing Hua Luan ◽  
Yao Cheng ◽  
Zha Xin Ima

The establishing of a precise simulation model for runoff prediction in river with several tributaries is the difficulty of flood forecast, which is also one of the difficulties in hydrologic research. Due to the theory of Artificial Neural Network, using Back Propagation algorithm, the flood forecast model for ShiLiAn hydrologic station in Minjiang River is constructed and validated in this study. Through test, the result shows that the forecast accuracy is satisfied for all check standards of flood forecast and then proves the feasibility of using nonlinear method for flood forecast. This study provides a new method and reference for flood control and water resources management in the local region.


Sign in / Sign up

Export Citation Format

Share Document