scholarly journals ESTIMATION OF GROSS PRIMARY PRODUCTION USING SATELLITE DATA AND GIS IN URBAN AREA, DENPASAR

Author(s):  
A.R. As-syakur ◽  
T. Osawa ◽  
IW.S. Adnyana

Remote sensing data with high spatial resolution is very useful to provideinformation about Gross Primary Production (GPP) especially over spatial coverage in theurban area. Most models of ecosystem carbon exchange based on remote sensing data usedlight use efficiency (LUE) model. The aim of this research was to analyze the distributionof annual GPP urban area of Denpasar. Two main satellite data used in this study wereALOS/AVNIR-2 and Aster satellite data. Result showed that annual value of GPP usingALOS/AVNIR-2 varied from 0.130 gC m-2 yr-1 to 2586.181 gC m-2 yr-1. Meanwhile, usingAster the value varied from 0.144 gC m-2 yr-1 to 2595.264 gC m-2 yr-1. The annual value ofGPP ALOS was lower than the value of Aster, because ALOS have high spatial resolutionand smaller interval of spectral resolution compared to Aster. Different land use couldeffect the value of GPP, because the different land use has different vegetation type,distribution, and different photosynthetic pathway type. The high spatial resolution of theremote sensing data is crucial to discriminate different land cover types in urban region.With heterogeneous land cover surface, maximum value of GPP using ALOS/AVNIR-2was smaller than that of Aster, however, the annual mean of GPP value usingALOS/AVNIR-2 was higher than that of Aster.

Author(s):  
G. Waldhoff ◽  
S. Eichfuss ◽  
G. Bareth

The classification of remote sensing data is a standard method to retrieve up-to-date land use data at various scales. However, through the incorporation of additional data using geographical information systems (GIS) land use analyses can be enriched significantly. In this regard, the Multi-Data Approach (MDA) for the integration of remote sensing classifications and official basic geodata for a regional scale as well as the achievable results are summarised. On this methodological basis, we investigate the enhancement of land use analyses at a very high spatial resolution by combining WorldView-2 remote sensing data and official cadastral data for Germany (the Automated Real Estate Map, ALK). Our first results show that manifold thematic information and the improved geometric delineation of land use classes can be gained even at a high spatial resolution.


Author(s):  
S. Lin ◽  
J. Li ◽  
Q. Liu

Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16&amp;thinsp;days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (&amp;gt;&amp;thinsp;1&amp;thinsp;km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50&amp;thinsp;% (R<sup>2</sup>&amp;thinsp;=&amp;thinsp;0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64&amp;thinsp;% of PAR variance (R<sup>2</sup>&amp;thinsp;=&amp;thinsp;0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R<sup>2</sup>&amp;thinsp;=&amp;thinsp;0.85, RMSE &amp;lt;&amp;thinsp;3&amp;thinsp;gC/m<sup>2</sup>/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.


2020 ◽  
Vol 12 (3) ◽  
pp. 417 ◽  
Author(s):  
Xin Zhang ◽  
Liangxiu Han ◽  
Lianghao Han ◽  
Liang Zhu

Land cover information plays an important role in mapping ecological and environmental changes in Earth’s diverse landscapes for ecosystem monitoring. Remote sensing data have been widely used for the study of land cover, enabling efficient mapping of changes of the Earth surface from Space. Although the availability of high-resolution remote sensing imagery increases significantly every year, traditional land cover analysis approaches based on pixel and object levels are not optimal. Recent advancement in deep learning has achieved remarkable success on image recognition field and has shown potential in high spatial resolution remote sensing applications, including classification and object detection. In this paper, a comprehensive review on land cover classification and object detection approaches using high resolution imagery is provided. Through two case studies, we demonstrated the applications of the state-of-the-art deep learning models to high spatial resolution remote sensing data for land cover classification and object detection and evaluated their performances against traditional approaches. For a land cover classification task, the deep-learning-based methods provide an end-to-end solution by using both spatial and spectral information. They have shown better performance than the traditional pixel-based method, especially for the categories of different vegetation. For an objective detection task, the deep-learning-based object detection method achieved more than 98% accuracy in a large area; its high accuracy and efficiency could relieve the burden of the traditional, labour-intensive method. However, considering the diversity of remote sensing data, more training datasets are required in order to improve the generalisation and the robustness of deep learning-based models.


2020 ◽  
Vol 40 (10) ◽  
pp. 1028001
Author(s):  
陈世涵 Chen Shihan ◽  
李玲 Li Ling ◽  
蒋弘凡 Jiang Hongfan ◽  
居伟杰 Ju Weijie ◽  
张曼玉 Zhang Manyu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document