scholarly journals Recent experiences with improving steel-to-hot-metal ratio in BOF steelmaking

10.30544/218 ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 101-106 ◽  
Author(s):  
T. D. Bradarić ◽  
Z. M. Slović ◽  
K.T. Raić

After the American company U.S. Steel pulled out of Serbia, the Serbian government decided to continue the steel production in Železara Smederevo. Given the unfavorable market conditions, this decision requires taking all necessary steps to reduce production costs in the time to come. Since most of the production losses occur during Basic Oxygen Furnace (BOF) process, this paper focuses on this stage of steel production. We provide an overview of related experiences in other steel plants as well as earlier production experiences in Železara Smederevo, and propose cost saving measures that will improve the overall business position of the Serbia's only one steel producer. These measures do not require new investments.

2010 ◽  
Vol 650 ◽  
pp. 9-16 ◽  
Author(s):  
Zhi Jia Huang ◽  
Xiao Ding ◽  
Hao Sun ◽  
Si Yue Liu

The amount of CO2 emissions from steelworks accounts for a great share of the total CO2 emissions from industry in China. Thus, reducing CO2 emissions from steelworks is urgent for China’s environmental protection and sustainable development. This study aims at identifying factors that influence CO2 emissions from steelworks and proposing measures to reduce CO2 emissions. The life cycle inventory (LCI) of iron and steel products implies the relationship between the CO2 emissions of the steelworks and the input variables of the LCI. The Tornado Chart Tool is utilized to calculate the variation of CO2 emissions caused by the change of each input variables of LCI. Then, mean sensitivity of each input variable is calculated and the ranking criterion developed is used to identify the main factors influencing the integrated steelworks. Subsequently, measures for reducing CO2 emissions are proposed. The results indicate that the very important influencing factors of CO2 emissions in steelworks are the CO2 emission factor of Blast Furnace Gas (BFG), liquid steel unit consumption of continuous casting, continuous casting slab unit consumption of hot rolling and hot metal ratio of steelmaking. Consequently, many efficient measures for reducing CO2 emissions have been proposed, such as removing CO2 contained in BFG, decreasing the hot metal ratio of Basic Oxygen Furnace (BOF), recycling BFG, optimizing the products’ structure, etc.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1057 ◽  
Author(s):  
Anton Andersson ◽  
Mats Andersson ◽  
Elsayed Mousa ◽  
Adeline Kullerstedt ◽  
Hesham Ahmed ◽  
...  

In ore-based steelmaking, blast furnace (BF) dust is generally recycled to the BF via the sinter or cold-bonded briquettes and injection. In order to recycle the BF sludge to the BF, the sludge has to be upgraded, removing zinc. The literature reports cases of recycling the low-zinc fraction of upgraded BF sludge to the BF. However, research towards recycling of the high-zinc fraction of BF sludge within the ore-based steel plant is limited. In the present paper, the high-zinc fraction of tornado-treated BF sludge was incorporated in self-reducing cold-bonded briquettes and pellets. Each type of agglomerate was individually subjected to technical-scale smelting reduction experiments aiming to study the feasibility of recycling in-plant residues to the hot metal (HM) desulfurization (deS) plant. The endothermic reactions within the briquettes decreased the heating and reduction rate leaving the briquettes unreduced and unmelted. The pellets were completely reduced within eight minutes of contact with HM but still showed melt-in problems. Cold-bonded briquettes, without BF sludge, were charged in industrial-scale trials to study the recycling potential to the HM deS plant and basic oxygen furnace (BOF). The trials illustrated a potential for the complete recycling of the high-zinc fraction of BF sludge. However, further studies were identified to be required to verify these results.


Author(s):  
Sharanappa Kalshetty ◽  
Rudramuniappa MV ◽  
Ratnakar Bonda ◽  
VR Sekhar ◽  

2020 ◽  
Vol 56 (1) ◽  
pp. 1-10
Author(s):  
E. Keskinkilic

Except for special grades of steel where it is used as an alloying element, phosphorus is regarded as an impurity that must be removed. Considering the conventional integrated iron and steelmaking, there are primarily two processes for phosphorus removal. The first is a hot metal dephosphorization (DeP) process that is applied to a blast furnace for hot metal before the steelmaking process. The second is the basic oxygen furnace steelmaking (BOS), a unique method primarily used for steelmaking, with the exception of stainless steels. Hot metal phosphorus content has a direct impact on BOS. An increase of phosphorus in hot metal is mainly related to the use of high P2O5 containing iron ores. In the current literature review, new trends of phosphorus removal in converter steelmaking are outlined. The double-slag practice was reported to be successful when hot metal P content was larger than 0.100%. It was indicated that the tapping temperature was critical for the production of low-phosphorus grades for which maximum allowable P content was 0.007% and that high tapping temperatures should be avoided. The tap-to-tap time for the double-slag process was slightly longer than the conventional converter steelmaking. It was further reported that the double-slag practice would be more economical than an establishment of a separate hot metal dephosphorization unit, if low-phosphorus grades did not have a significant share in the product mix of a steelmaking company. Endpoint phosphorus prediction was one of the important recent trends of converter steelmaking. A mixed injection of CO2-O2 to a basic oxygen furnace was applied to enhance dephosphorization, and promising results were reported. Unfortunately, a successful process for recycling of BOS dephosphorization slag has not been reported yet.


2009 ◽  
Vol 95 (3) ◽  
pp. 207-216 ◽  
Author(s):  
Akitoshi Matsui ◽  
Seiji Nabeshima ◽  
Hidetoshi Matsuno ◽  
Naoki Kikuchi ◽  
Yasuo Kishimoto

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1471
Author(s):  
Katarina Lundkvist ◽  
Sara Rosendahl ◽  
Fredrik Nyman ◽  
Kristofer Bölke ◽  
Lennart Gustavsson ◽  
...  

Integrating novel technology in production systems for the upgrading and further use of residual materials is a potential way of improving the resource efficiency. Assessing technology integration prospects, by performing system analysis, assists in the forecasting of effects and opportunities for different concepts. Based on pilot trials results, using Linde’s OXYFINES technique for upgrading zinc containing blast furnace sludge, a system analysis was performed on the prospects of integrating an OXYFINES concept in an iron and steel production route. The calculations were made based on one option for a full-scale OXYFINES concept for indicating the effects on the blast furnace zinc load, raw material consumption, energy use and carbon dioxide emissions from using the OXYFINES sinter product as a raw material in blast furnace ironmaking or in the basic oxygen furnace steelmaking. The summarised system analysis results showed that the most advantageous metallurgical, environmental, and economic potential was realised in the calculations of using the sinter in the basic oxygen furnace. However, the sinter was found as well suitable for use in the blast furnace when considering mainly the metallurgical and the economic effects.


Sign in / Sign up

Export Citation Format

Share Document