recycling potential
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 72)

H-INDEX

24
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 196
Author(s):  
Lynn Trossaert ◽  
Matthias De Vel ◽  
Ludwig Cardon ◽  
Mariya Edeleva

Sustainability and recyclability are among the main driving forces in the plastics industry, since the pressure on crude oil resources and the environment is increasing. The aim of this research is to develop a sustainable thermoformable multilayer food packaging, based on co-polyesters, which is suitable for hot-fill applications and allows for recycling in a conventional waste stream. As a polymer material for the outer layer, we selected a modified polyethylene terephthalate (PETM), which is an amorphous co-polyester with a high glass transition temperature (±105 °C) and thus high thermal stability and transparency. The inner layer consists of 1,4-cyclohexylene dimethanol-modified polyethylene terephthalate (PETg), which is allowed to be recycled in a PET stream. Multilayers with a total thickness of 1 mm and a layer thickness distribution of 10/80/10 have been produced. To test the recyclability, sheets which contained 20% and 50% regrind of the initial multilayer in their middle PETg layer have been produced as well. The sheet produced from virgin pellets and the one containing 20% regrind in the middle layer showed no visible haze. This was not the case for the one containing 50% regrind in the middle layer, which was confirmed by haze measurements. The hot-fill test results showed no shrinkage or warpage for the multilayer trays for all temperatures applied, namely 95, 85, 75 and 65 °C. This is a remarkable improvement compared to pure PETg trays, which show a visible deformation after exposure to hot-fill conditions of 95 °C and 85 °C.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Madelyn Marrero ◽  
Cristina Rivero-Camacho ◽  
Alejandro Martínez-Rocamora ◽  
María Desirée Alba-Rodríguez ◽  
Jaime Solís-Guzmán

In Spain, most businesses are medium to small size enterprises, representing 90% of the total, but there is a lack of studies of the types of building this sector uses. The main objective of this paper is to present a method for the evaluation of small industrial construction projects to facilitate the introduction of eco-efficient solutions. For this, it is necessary to identify the most representative buildings and the aspects of these which have the most environmental impact. A methodology in place for the evaluation of dwelling construction is adapted, for the first time, to evaluate industrial buildings. The construction solutions characterized are those traditionally used in the sector, as identified through 87 surveys. A standardized classification of work units is proposed to enable the use of environmental product information, such as eco-labels and/or EPD, and LCA databases. The carbon footprint (CF) and water footprint (WF) are the indicators selected because of their straightforward message. Finally, a comparative analysis is performed showing the high recycling potential of concrete and cement which, along with metals and aggregates, control the impact in terms of CF. With respect to the WF indicator, plastic substitute aggregates are among the materials with the greatest impact.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2250
Author(s):  
Naif Alsaadi

Additive manufacturing (AM) is gaining significant importance, as demand for customized products is increasing nowadays. AM is one of the disruptive technologies of Industry 4.0, which can reduce waste generation, enabling sustainability. The adoption of sustainable practices in the manufacturing sector is due to the need of the current scenario to minimize harmful emissions and for human wellbeing. In this regard, AM technologies are integrated with sustainable manufacturing concepts to contribute toward sustainable AM (SAM), with various benefits from the design, manufacturing, use, and EoL perspectives. Still, many sustainability issues are associated with AM processes, namely limited speed and the uncertain performance of fabricated parts. From this viewpoint, it is essential to analyze the challenges associated with adopting SAM practices. This article presents identification and analysis of the potential challenges associated with adopting SAM practices. Fifteen SAM challenges have been identified from the literature survey and analyzed using the “Gray Technique for Order of Preference by Similarity to Ideal Solution” (G-TOPSIS) approach. The priority order of the challenges has been identified. The study identified that “training towards SAM benefits” and “limited materials recycling potential” were the significant challenges in adopting SAM practices in the manufacturing sector. The present study will help industry practitioners, decision makers, and researchers effectively analyze the challenges associated with SAM for its effective implementation. Researchers can utilize the findings of the study for establishing the guidelines for the adoption of SAM.


2021 ◽  
Vol 2136 (1) ◽  
pp. 012058
Author(s):  
Junchi Zhao ◽  
Yao Wang ◽  
Fengtong Liu

Abstract Reuse of retired aircraft is an intuitive manifestation of the effective combined development of the aviation industry and the circular economy, which involves the conversion of passenger aircraft to cargo and aircraft dismantling. In the new era, it shows the characteristics of intensive development of technology and capital. According to the operation scale of China’s aircraft in recent years, with the improvement of scientific research and technology, the number of aircraft fleets is also growing continuously, and the corresponding number of retired aircraft is also increasing every year, which proves that the development of China’s retired aircraft reuse industry has a very broad prospect. Therefore, on the basis of understanding the current global trend of aircraft life-cycle training and utilization, this paper calculates the FA model based on the potential output value of the retired aircraft recycling industry based on the FA-SD model, analyzes the empirical analysis and prediction of the evaluation model of the retired aircraft recycling potential, and identifies the effective measures for future development.


Recycling ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 76
Author(s):  
Abdelhak Ladhari ◽  
Esra Kucukpinar ◽  
Henning Stoll ◽  
Sven Sängerlaub

Polypropylene (PP) has a high recycling potential. However, the properties of mechanically recycled PP (R-PP) have not been fully compared to those of virgin PP (V-PP). Therefore, in this study, properties of R-PP and V-PP were compared using data from recyclers, virgin plastic suppliers, and the literature. The properties of recyclates could not be directly correlated either with the properties of the virgin polymers from which the recyclates were made or the recycling parameters. It was found that the MFR of R-PP was higher; MFR R-PP had a median value (m) of 11 g/10 min while MFR V-PP had a median value of 6.3 g/10 min (at 230 °C and with 2.16 kg). In terms of mechanical properties, in many cases R-PP exhibited stiffer and more brittle behavior, with a slightly higher Young’s modulus (ER-PP = 1400 and EV-PP = 1200 MPa), a reduced elongation at break (ɛbR-PP = 4 l.-% and ɛbV-PP = 83 l.-%), and notched charpy impact strength (NCISR-PP = 4.8 and NCISV-PP = 7.5 kJ/m2). However, the values for every property had a broad distribution. In addition to existing information from the literature, our research sheds fresh light on the variation of the characteristics of recycled polypropylenes presently on the market.


2021 ◽  
Vol 22 (22) ◽  
pp. 12544
Author(s):  
Wan Yang ◽  
Vijay Singh Gondil ◽  
Dehua Luo ◽  
Jin He ◽  
Hongping Wei ◽  
...  

Staphylococcal-associated device-related infections (DRIs) represent a significant clinical challenge causing major medical and economic sequelae. Bacterial colonization, proliferation, and biofilm formation after adherence to surfaces of the indwelling device are probably the primary cause of DRIs. To address this issue, we incorporated constructs of silica-binding peptide (SiBP) with ClyF, an anti-staphylococcal lysin, into functionalized coatings to impart bactericidal activity against planktonic and sessile Staphylococcus aureus. An optimized construct, SiBP1-ClyF, exhibited improved thermostability and staphylolytic activity compared to its parental lysin ClyF. SiBP1-ClyF-functionalized coatings were efficient in killing MRSA strain N315 (>99.999% within 1 h) and preventing the growth of static and dynamic S. aureus biofilms on various surfaces, including siliconized glass, silicone-coated latex catheter, and silicone catheter. Additionally, SiBP1-ClyF-immobilized surfaces supported normal attachment and growth of mammalian cells. Although the recycling potential and long-term stability of lysin-immobilized surfaces are still affected by the fragility of biological protein molecules, the present study provides a generic strategy for efficient delivery of bactericidal lysin to solid surfaces, which serves as a new approach to prevent the growth of antibiotic-resistant microorganisms on surfaces in hospital settings and could be adapted for other target pathogens as well.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1969
Author(s):  
Mariya Edeleva ◽  
Dahang Tang ◽  
Tom Van Waeleghem ◽  
Flávio H. Marchesini ◽  
Ludwig Cardon ◽  
...  

One of the challenges for the manufacturing processes of polymeric parts is the dedicated control of composite melt flow. In the present work, the predictive capability of the Phan-Thien-Tanner (PTT) viscoelastic model is evaluated in relation to the extrudate swell from slit dies at 200 °C, considering polypropylene and graphite filler, and applying ANSYS Polyflow software. It is shown that for sufficiently low filler amounts (below 10%; volumetric) the PTT accurately reflects the viscoelastic interactions, but at higher filler amounts too large swellings are predicted. One can although obtain insights on the swelling in the height direction and consider a broader range of swelling areas compared to virgin materials. Guidelines are also provided for future experiments and model development, including the omission of the no-slip process boundary condition.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6622
Author(s):  
Fabian Schoden ◽  
Anna Katharina Schnatmann ◽  
Emma Davies ◽  
Dirk Diederich ◽  
Jan Lukas Storck ◽  
...  

The effects of climate change are becoming increasingly clear, and the urgency of solving the energy and resource crisis has been recognized by politicians and society. One of the most important solutions is sustainable energy technologies. The problem with the state of the art, however, is that production is energy-intensive and non-recyclable waste remains after the useful life. For monocrystalline photovoltaics, for example, there are recycling processes for glass and aluminum, but these must rather be described as downcycling. The semiconductor material is not recycled at all. Another promising technology for sustainable energy generation is dye-sensitized solar cells (DSSCs). Although efficiency and long-term stability still need to be improved, the technology has high potential to complement the state of the art. DSSCs have comparatively low production costs and can be manufactured without toxic components. In this work, we present the world’ s first experiment to test the recycling potential of non-toxic glass-based DSSCs in a melting test. The glass constituents were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES), and the surface was examined by scanning electron microscopy energy dispersive X-ray (SEM-EDX). The glass was melted in a furnace and compared to a standard glass recycling process. The results show that the described DSSCs are suitable for glass recycling and thus can potentially circulate in a circular economy without a downcycling process. However, material properties such as chemical resistance, transparency or viscosity are not investigated in this work and need further research.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1190
Author(s):  
Daniel Dotto München ◽  
Ronei Tiago Stein ◽  
Hugo Marcelo Veit

Besides neodymium, the chemical composition of Neodymium–Iron–Boron (NdFeB) permanent magnets possibly contains other rare earth elements (REEs) such as praseodymium, dysprosium, and terbium. Among its applications, NdFeB magnets are essential for Hard Disk Drives (HDDs) in computers for data storage, in Mobile Phones (MPs), and in acoustic transducers. Because REEs were classified as critical raw materials by the European Union and the USA, the recycling of them has become an important strategy to diminish supply risk. Therefore, in this publication, the authors have uncovered the recycling potential estimate (RPE) of these four REEs from both end-of-life (EoL) secondary sources. The results were based on the time-step method, using in-use stock and sales data from Brazil over the last decade (2010–2019). Moreover, the NdFeB magnets were characterized by content and weight to a more accurate RPE. The EoL generation over the decade studied showed different scenarios for MPs and HDDs, mainly due to lifespan, social behavior regarding storage and usage, and resources. Under those circumstances, the RPE revealed 211.30 t of REEs that could return as raw materials in the last decade, of which approximately 80% is neodymium. Unfortunately, recycling rates are still too low, even more so in Brazil, which is problematic for the future REE supply chain and electronic waste figures.


Sign in / Sign up

Export Citation Format

Share Document