scholarly journals Reasons for Modern Warming: Hypotheses and Facts

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Nikolai Nikolaevich Zavalishin

Two hypotheses of modern warming are considered: natural and anthropogenic. The probabilities of each of them are compared. It is proved that the hypothesis of natural warming is much more likely than the hypothesis of anthropogenic warming. It is shown that the displacement of the Sun from the center of mass of the solar system directly affects the temperature of the surface atmosphere in the synoptic regions of Eurasia. This result corresponds to the model of E. P. Borysenkov with variations of the solar constant or, equivalently, with variations of the Bond albedo.

2020 ◽  
Vol 4 (1) ◽  
pp. 42-48
Author(s):  
Nikolai N. Zavalishin

Two hypotheses of modern warming are considered: natural and anthropogenic. The probabilities of each of them are compared. It is proved that the hypothesis of natural warming is much more likely than the hypothesis of anthropogenic warming. It is shown that the displacement of the Sun from the center of mass of the solar system directly affects the temperature of the surface atmosphere in the synoptic regions of Eurasia. This result corresponds to the model of E. P. Borysenkov with variations of the solar constant or, equivalently, with variations of the Bond albedo. We consider how natural causes of warming affect the temperature of the surface atmosphere on the example of the South of Western Siberia.


When a surface is a full radiator and absorber its temperature can be determined at once by the fourth-power law if we know the rate at which it is radiating energy. If it is radiating what it receives from the sun, then a knowledge of the solar constant enables us to find the temperature. We can thus make estimates of the highest temperature which a surface can reach when it is only receiving heat from the sun. We can also make more or less approximate estimates of the temperatures of the planetary surfaces by assuming conditions under which the radiation takes place, and we can determine, fairly exactly, the temperatures of very small bodies in interplanetary space. These determinations require a knowledge of the constant of radiation and of either the solar constant or the effective temperature of the sun, either of which, as is well known, can be found from the other by means of the radiation constant. It will be convenient to give here the values of these quantities before proceeding to apply them to our special problems.


2013 ◽  
Vol 40 (1) ◽  
pp. 127-134
Author(s):  
Milutin Marjanov

Besides translation, spin around its axis and rotation around center of the Milky Way, the Sun performs relative motion in the solar system Laplacian plane, also. This motion was anticipated by Newton himself, in his Principia. The form of the Sun?s orbit is substantially different from the other solar system bodies? orbits. Namely, the Sun moves along the path composed of the chain of large and small loops [1, 2, 6, 9]. This chain is situated within the circular outline with the diameter approximately twice as large as the Sun?s is. Under supposition that the solar system is stable, the Sun is going to move along it, in the same region, for eternity, never reitereiting the same path. It was also shown in this work that velocity and acceleration of the Sun?s center of mass are completely defined by the relative velocities and accelerations of the planets with respect to the Sun.


1904 ◽  
Vol 72 (477-486) ◽  
pp. 265-266 ◽  

We can calculate an upper limit to the temperatures of fully absorbing or “black” surfaces receiving their heat from the sun, and on certain assumptions we can find the temperatures of planetary surfaces, if we accept the fourth power law of radiation, since we know approximately the solar constant, that is, the rate of reception of heat from the sun, and the radiation constant, that is, the energy radiated at 1° abs. by a fully radiating surface. The effective temperature of space calculated from the very uncertain data at our command is of the order 10° abs. Bodies in interplanetary space and at a much higher temperature may, therefore, be regarded as being practically in a zero temperature enclosure except in so far as they receive heat from the sun.


1984 ◽  
Vol 86 ◽  
pp. 155-158 ◽  
Author(s):  
Giancarlo Noci

In the past years several space missions have been proposed for the study of the Sun and of the Heliosphere. These missions were intended to clarify various different aspects of solar physics. For example, the GRIST (Grazing Incidence Solar Telescope) mission was intended as a means to improve our knowledge of the upper transition region and low corona through the detection of the solar EUV spectrum with a spatial resolution larger than in previous missions; the DISCO (Dual Spectral Irradiance and Solar Constant Orbiter) and SDO (Solar Dynamics Observatory) missions were proposed to gat observational data about the solar oscillations better than those obtained from ground based instruments; the SOHO (Solar and Heliospheric Observatory) mission was initially proposed to combine the properties of GRIST with the study of the extended corona (up to several radii of heliocentric distance) by observing the scattered Ly-alpha and OVI radiation, which was also the basis of the SCE (Solar Corona Explorer) mission proposal; the development of the interest about the variability of the Sun, both in itself and for its consequences in the history of the Earth, led to propose observations of the solar constant (included in DISCO).


1974 ◽  
Vol 3 ◽  
pp. 489-489
Author(s):  
M. W. Ovenden

AbstractThe intuitive notion that a satellite system will change its configuration rapidly when the satellites come close together, and slowly when they are far apart, is generalized to ‘The Principle of Least Interaction Action’, viz. that such a system will most often be found in a configuration for which the time-mean of the action associated with the mutual interaction of the satellites is a minimum. The principle has been confirmed by numerical integration of simulated systems with large relative masses. The principle lead to the correct prediction of the preference, in the solar system, for nearly-commensurable periods. Approximate methods for calculating the evolution of an actual satellite system over periods ˜ 109 yr show that the satellite system of Uranus, the five major satellites of Jupiter, and the five planets of Barnard’s star recently discovered, are all found very close to their respective minimum interaction distributions. Applied to the planetary system of the Sun, the principle requires that there was once a planet of mass ˜ 90 Mθ in the asteroid belt, which ‘disappeared’ relatively recently in the history of the solar system.


2008 ◽  
Vol 4 (S251) ◽  
pp. 327-328
Author(s):  
Mau C. Wong ◽  
Tim Cassidy ◽  
Robert E. Johnson

AbstractThe presence of an undersurface ocean renders Europa as one of the few planetary bodies in our Solar System that has been conjectured to have possibly harbored life. Some of the organic and inorganic species present in the ocean underneath are expected to transport upwards through the relatively thin ice crust and manifest themselves as impurities of the water ice surface. For this reason, together with its unique dynamic atmosphere and geological features, Europa has attracted strong scientific interests in past decades.Europa is imbedded inside the Jovian magnetosphere, and, therefore, is constantly subjected to the immerse surrounding radiations, similar to the other three Galilean satellites. The magnetosphere-atmosphere-surface interactions form a complex system that provides a multitude of interesting geophysical phenomenon that is unique in the Solar System. The atmosphere of Europa is thought to have created by, mostly, charged particles sputtering of surface materials. Consequently, the study of Europa's atmosphere can be used as a tool to infer the surface composition. In this paper, we will discuss our recent model studies of Europa's near-surface atmosphere. In particular, the abundances and distributions of the dominant O2 and H2O species, and of other organic and inorganic minor species will be addressed.


Sign in / Sign up

Export Citation Format

Share Document