The main periodicities of the motion of the center of the sun relative to the center of mass of the solar system and solar activity

2011 ◽  
Vol 66 (6) ◽  
pp. 634-638 ◽  
Author(s):  
V. P. Okhlopkov
2017 ◽  
Vol 35 (3) ◽  
pp. 659-669 ◽  
Author(s):  
Wei Sun ◽  
Jian Wang ◽  
JinRu Chen ◽  
Ying Wang ◽  
GuangMing Yu ◽  
...  

Abstract. The relationship between the periodic movement of the planetary system and its influence on solar activity is currently a serious topic in research. The kinematic index of the planet juncture index has been developed to find the track and variation of the Sun around the centroid of the solar system and the periodicity of solar activity. In the present study, the kinematic index of the planetary system's heliocentric longitude, developed based on the orbital elements of planets in the solar system, and it is used to investigate the periodic movement of the planetary system. The kinematic index of the planetary system's heliocentric longitude and that of the planet juncture index are simulated and analyzed. The numerical simulation of the two kinematic indexes shows orderly orbits and disorderly orbits of 49.9 and 129.6 years, respectively. Two orderly orbits or two disorderly orbits show a period change rule of 179.5 years. The contrast analysis between the periodic movement of the planetary system and the periodicity of solar activity shows that the two phenomena exhibit a period change rule of 179.5 years. Moreover, orderly orbits correspond to high periods of solar activity and disorderly orbits correspond to low periods of solar activity. Therefore, the relative movement of the planetary system affects solar activity to some extent. The relationship provides a basis for discussing the movement of the planetary system and solar activity.


2020 ◽  
Vol 4 (1) ◽  
pp. 42-48
Author(s):  
Nikolai N. Zavalishin

Two hypotheses of modern warming are considered: natural and anthropogenic. The probabilities of each of them are compared. It is proved that the hypothesis of natural warming is much more likely than the hypothesis of anthropogenic warming. It is shown that the displacement of the Sun from the center of mass of the solar system directly affects the temperature of the surface atmosphere in the synoptic regions of Eurasia. This result corresponds to the model of E. P. Borysenkov with variations of the solar constant or, equivalently, with variations of the Bond albedo. We consider how natural causes of warming affect the temperature of the surface atmosphere on the example of the South of Western Siberia.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Nikolai Nikolaevich Zavalishin

Two hypotheses of modern warming are considered: natural and anthropogenic. The probabilities of each of them are compared. It is proved that the hypothesis of natural warming is much more likely than the hypothesis of anthropogenic warming. It is shown that the displacement of the Sun from the center of mass of the solar system directly affects the temperature of the surface atmosphere in the synoptic regions of Eurasia. This result corresponds to the model of E. P. Borysenkov with variations of the solar constant or, equivalently, with variations of the Bond albedo.


2020 ◽  
Vol 17 (3) ◽  
pp. 0806
Author(s):  
Mays M. Al-Gbory ◽  
Najat Mohamed Ameen

     Kp index correlates with the many magnetosphere properties, which are used to measure the level of magnetic activity. In the solar system, the two different planets, Mercury with weak magnetic field and Jupiter with strong magnetic field, are selected for this study to calculate the planet's magnetosphere radius (RMP) which represents the size of magnetosphere compared with solar activity through Kp index,  through two types of geomagnetic conditions; quiet and strong for the period (2016-2018). From the results, we found that there are reversible relations between them during strong geomagnetic storms, while there are direct relations during quiet geomagnetic conditions. Also it is found that there is a reduction in the size of magnetosphere during the strong geomagnetic storms as compared to the magnetosphere size during geomagnetic quiet conditions for the two planets: Mercury and Jupiter. We can conclude from these results that the relation between storm type and magnetosphere size is independent of the strength of planetary surface magnetic field and their distance from the Sun.


2021 ◽  
Vol 16 (3) ◽  
pp. 7-35
Author(s):  
Valeriy I. Alekseev

A set of studies has been carried out, indicating that solar activity and processes associated with the activity of the Sun: changes in the main magnetic fluxes, areas of polar spots, the number of polar torches at the poles of the Sun; -index of geomagnetic activity and -index of the ratio of plasma pressure to magnetic solar wind (SW), slow and high-speed flows of SW, cosmic ray intensity (CR); average annual values of the interplanetary magnetic field vector and its components; the temperature, density, and flow rate of the SW plasma, the synodic period of the revolution of the Sun as a star, and the radius of the Sun in relative units; the distance of the Earths geographic pole from the conventional international origin, the rate of change of the position of the Earths north magnetic pole, the main ionospheric parameters; the angle of the Earth's axis of rotation and volcanic eruptions; asymmetric movement of the Sun around the solar system of the solar system (in fractions of the solar radius); the distances from the solar systems CM to the Sun in km, the distances from the solar systems CM to the Earth, with high accuracy, are consistent with the movement of the Sun relative to the barycenter. The research is based on the wavelet transformation of the observations listed above variables in various time intervals with the subsequent calculation of their phase-frequency and phase-time characteristics, correlation matrices between characteristics. The studied variables are divided into groups, which include the barycentric movement of the Sun and changes in solar activity. The calculated two correlation matrices of the wavelet characteristics of the group of variables and the graphs of these characteristics in two coordinate systems reflect the consistency of changes in the group. The studies carried out indicate that the thermonuclear reaction occurring in the interior of the Sun, the external manifestation of which is solar activity, is controlled by the movements of the large planets of the Solar System relative to the Sun.


2013 ◽  
Vol 40 (1) ◽  
pp. 127-134
Author(s):  
Milutin Marjanov

Besides translation, spin around its axis and rotation around center of the Milky Way, the Sun performs relative motion in the solar system Laplacian plane, also. This motion was anticipated by Newton himself, in his Principia. The form of the Sun?s orbit is substantially different from the other solar system bodies? orbits. Namely, the Sun moves along the path composed of the chain of large and small loops [1, 2, 6, 9]. This chain is situated within the circular outline with the diameter approximately twice as large as the Sun?s is. Under supposition that the solar system is stable, the Sun is going to move along it, in the same region, for eternity, never reitereiting the same path. It was also shown in this work that velocity and acceleration of the Sun?s center of mass are completely defined by the relative velocities and accelerations of the planets with respect to the Sun.


1974 ◽  
Vol 3 ◽  
pp. 489-489
Author(s):  
M. W. Ovenden

AbstractThe intuitive notion that a satellite system will change its configuration rapidly when the satellites come close together, and slowly when they are far apart, is generalized to ‘The Principle of Least Interaction Action’, viz. that such a system will most often be found in a configuration for which the time-mean of the action associated with the mutual interaction of the satellites is a minimum. The principle has been confirmed by numerical integration of simulated systems with large relative masses. The principle lead to the correct prediction of the preference, in the solar system, for nearly-commensurable periods. Approximate methods for calculating the evolution of an actual satellite system over periods ˜ 109 yr show that the satellite system of Uranus, the five major satellites of Jupiter, and the five planets of Barnard’s star recently discovered, are all found very close to their respective minimum interaction distributions. Applied to the planetary system of the Sun, the principle requires that there was once a planet of mass ˜ 90 Mθ in the asteroid belt, which ‘disappeared’ relatively recently in the history of the solar system.


Sign in / Sign up

Export Citation Format

Share Document