scholarly journals Medicinal plants possessed anti-Parkinsonian effects with emphasis on their mechanisms of action

2021 ◽  
Vol 17 (1) ◽  
pp. 232-237
Author(s):  
Ali Esmail Al-Snafi

Parkinsonʼs disease is a progressive neurodegenerative dysfunction characterized by the loss of dopaminergic neurons of the nigrostriatal system. Dopamine is important to maintain normal movement patterns. The cardinal physical signs of the disease are distal resting tremor, rigidity, bradykinesia, and asymmetric onset. Treatment aims to improve these motor symptoms. Many medicinal plants possessed Parkinsonian effects by different mechanisms, included inhibition of α-synuclein condensation, reduction of oxidative stress and neuro-inflammation, increase of dopaminergic neurons survival, blockade of the adenosine A2A receptor and regulation of molecular pathways involved in neuronal survival such as MAPK, Nrf2, and NF-κB, thus exerted neuroprotective actions. In the present review, we highlight the medicinal plants with potential anti-Parkinsonian effects with discussing the mechanisms of their beneficial effects.

2018 ◽  
Vol 154 (6) ◽  
pp. S-1036
Author(s):  
Baokun He ◽  
Thomas K. Hoang ◽  
Dat Q. Tran ◽  
J. Marc Rhoads ◽  
Yuying Liu

Author(s):  
Marcello Serra ◽  
Annalisa Pinna ◽  
Giulia Costa ◽  
Alessandro Usiello ◽  
Massimo Pasqualetti ◽  
...  

Rhes is one of the most interesting proteins regulated by thyroid hormones that, through the inhibition of the striatal cAMP/PKA pathway, acts as a modulator of dopamine neurotransmission. It is expressed at high levels in the dorsal striatum, with a medial-to-lateral expression gradient reflecting that of both dopamine D2 and adenosine A2A receptors. Rhes is also present in the hippocampus, cerebral cortex, olfactory tubercle and bulb, substantia nigra pars compacta (SNc) and ventral tegmental area of the rodent brain. In line with Rhes-dependent regulation of dopaminergic transmission, several data showed that lack of Rhes enhanced cocaine and amphetamine-induced motor stimulation in mice. Previous studies showed that pharmacological depletion of dopamine significantly reduces Rhes mRNA levels in rodents, non-human primates and Parkinson’s disease (PD) patients, suggesting a link between dopaminergic innervation and physiological Rhes mRNA expression. Rhes protein binds to and activates striatal mTORC1, and modulates L-DOPA-induced dyskinesia in PD rodent models. Finally, Rhes is involved in the survival of mouse midbrain dopaminergic neurons of SNc, thus pointing towards a Rhes-dependent modulation of autophagy and mitophagy processes, and encouraging further investigations about mechanisms underlying dysfunctions of the nigrostriatal system.


2013 ◽  
pp. 285-295 ◽  
Author(s):  
M. BROZMANOVÁ ◽  
L. MAZÚROVÁ ◽  
M. TATÁR ◽  
M. KOLLÁRIK

Clinical studies showed that GABAB receptor agonists improve symptoms in patients with gastroesophageal reflux disease. One proposed mechanism of this effect is direct inhibition of the gastroesophageal vagal tension mechanosensors by GABAB agonists leading to reduction of reflux. In addition to tension mechanosensors, the vagal nodose ganglion supplies the esophagus with nociceptive C-fibers that likely contribute to impairment of esophageal reflex regulation in diseases. We hypothesized that GABAB agonists inhibit mechanically-induced activation of vagal esophageal nodose C-fibers in baseline and/or in sensitized state induced by inflammatory mediators. Ex vivo extracellular recordings were made from the esophageal nodose C-fibers in the isolated vagally-innervated guinea pig esophagus. We found that the selective GABAB agonist baclofen (100-300 µM) did not inhibit activation of esophageal nodose C-fibers evoked by esophageal distention (10-60 mmHg). The mechanical response of esophageal nodose C-fibers can be sensitized by different pathways including the stimulation of the histamine H1 receptor and the stimulation the adenosine A2A receptor. Baclofen failed to inhibit mechanical sensitization of esophageal nodose C-fibers induced by histamine (100 µM) or the selective adenosine A2A receptor agonist CGS21680 (3 nM). Our data suggest that the direct mechanical inhibition of nodose C-fibers in the esophagus is unlikely to contribute to beneficial effects of GABAB agonists in patients with esophageal diseases.


Author(s):  
Evandro Manoel Neto-Neves ◽  
Carlos da Silva Maia Bezerra Filho ◽  
Naiara Naiana Dejani ◽  
Damião Pergentino de Sousa

: Bioactive compounds found in food and medicinal plants contribute to maintaining health and treating illnesses. For example, hydroxycinnamic acids, such as ferulic acid, are widely present in nature and have several pharmacological properties, including antioxidant, anti-inflammatory, and beneficial effects in parameters of diabetes and hyperlipidemia. In fact, the results of studies in animal models and in vitro experiments of ferulic acid suggest its high therapeutic and preventive potential against several pathological disorders, such as cardiovascular diseases. Therefore, in this review, the bioactivities of ferulic acid on the cardiovascular system are described, including the discussion of the mechanisms of action in the various components of the system. In this review, we discuss the pharmacological properties of this versatile natural product in aspects of cardiovascular health, including cardioprotective and antihypertensive actions, and on the metabolism of lipids, diabetes, and thrombosis.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1027
Author(s):  
Akihisa Mori ◽  
Brittany Cross ◽  
Shinichi Uchida ◽  
Jill Kerrick Walker ◽  
Robert Ristuccia

Adenosine is extensively distributed in the central and peripheral nervous systems, where it plays a key role as a neuromodulator. It has long been implicated in the pathogenesis of progressive neurogenerative disorders such as Parkinson’s disease, and there is now growing interest in its role in amyotrophic lateral sclerosis (ALS). The motor neurons affected in ALS are responsive to adenosine receptor function, and there is accumulating evidence for beneficial effects of adenosine A2A receptor antagonism. In this article, we focus on recent evidence from ALS clinical pathology and animal models that support dynamism of the adenosinergic system (including changes in adenosine levels and receptor changes) in ALS. We review the possible mechanisms of chronic neurodegeneration via the adenosinergic system, potential biomarkers and the acute symptomatic pharmacology, including respiratory motor neuron control, of A2A receptor antagonism to explore the potential of the A2A receptor as target for ALS therapy.


BIO-PROTOCOL ◽  
2014 ◽  
Vol 4 (6) ◽  
Author(s):  
Kenneth Jacobson ◽  
Francisco Ciruela

2008 ◽  
Vol 22 (5) ◽  
pp. 1249-1255 ◽  
Author(s):  
Alison Wedekind ◽  
Michelle A. O'Malley ◽  
Ronald T. Niebauer ◽  
Anne S. Robinson

Sign in / Sign up

Export Citation Format

Share Document