midbrain dopaminergic neurons
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 63)

H-INDEX

62
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Gaia Faustini ◽  
Francesca Longhena ◽  
Alessia Muscò ◽  
Federica Bono ◽  
Edoardo Parrella ◽  
...  

Abstract Polymorphisms in the Synapsin III (Syn III) gene can associate with attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. In spite of evidence supporting that Syn III controls the development of cortical and hippocampal short-projecting neurons, whether it plays a similar role in midbrain dopaminergic neurons (mDN), owning extensively arborized long-distance multi-synaptic axonal projections, was unexplored. Our studies on mDN development in zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and Syn III-deleted human induced pluripotent stem cells (iPSCs)-derived neurons disclose that Syn III governs early mDN developmental stages in fishes and mammals. Differently to what observed in cortical and hippocampal neurons, this Syn III function impinges on the upstream control of brain derived neurotrophic factor (BDNF)-mediated and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. These findings have significant implications for deciphering the basis of ADHD.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2333
Author(s):  
Daniel Romaus-Sanjurjo ◽  
Antía Custodia ◽  
Marta Aramburu-Núñez ◽  
Adrián Posado-Fernández ◽  
Laura Vázquez-Vázquez ◽  
...  

In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.


2021 ◽  
Vol 118 (40) ◽  
pp. e2111069118
Author(s):  
Theodoros Tsetsenis ◽  
Julia K. Badyna ◽  
Julianne A. Wilson ◽  
Xiaowen Zhang ◽  
Elizabeth N. Krizman ◽  
...  

Aversive memories are important for survival, and dopaminergic signaling in the hippocampus has been implicated in aversive learning. However, the source and mode of action of hippocampal dopamine remain controversial. Here, we utilize anterograde and retrograde viral tracing methods to label midbrain dopaminergic projections to the dorsal hippocampus. We identify a population of midbrain dopaminergic neurons near the border of the substantia nigra pars compacta and the lateral ventral tegmental area that sends direct projections to the dorsal hippocampus. Using optogenetic manipulations and mutant mice to control dopamine transmission in the hippocampus, we show that midbrain dopamine potently modulates aversive memory formation during encoding of contextual fear. Moreover, we demonstrate that dopaminergic transmission in the dorsal CA1 is required for the acquisition of contextual fear memories, and that this acquisition is sustained in the absence of catecholamine release from noradrenergic terminals. Our findings identify a cluster of midbrain dopamine neurons that innervate the hippocampus and show that the midbrain dopamine neuromodulation in the dorsal hippocampus is sufficient to maintain aversive memory formation.


Cell Reports ◽  
2021 ◽  
Vol 36 (11) ◽  
pp. 109697
Author(s):  
Marianna Tolve ◽  
Ayse Ulusoy ◽  
Nikolaos Patikas ◽  
K. Ushna S. Islam ◽  
Gabriela O. Bodea ◽  
...  

2021 ◽  
Author(s):  
Shamma Qarin ◽  
Sarah K Howlett ◽  
Joanne L Jones ◽  
Roger Barker

Dopaminergic (DA) cell replacement therapies are a promising experimental treatment for Parkinson’s disease and a number of different types of DA cell-based therapies have already been trialled in patients. To date the most successful have been allotransplants of foetal ventral midbrain but even then, the results have been inconsistent. This coupled to the ethical and logistical problems with using this tissue has meant that an alternative cell source has been sought of which human pluripotent stem cells (hPSC) sources have proven very attractive. Robust protocols for making mesencephalic DA progenitor cells from hPSC now exist and the first in-human clinical trials have or are about to start. However, while their safety and efficacy are well understood, relatively little is known about their immunogenicity and in this review, we briefly summarise this with reference mainly to the limited literature on human foetal dopaminergic cells.


2021 ◽  
Vol 15 ◽  
Author(s):  
Marianne Amalric ◽  
Tommy Pattij ◽  
Ioannis Sotiropoulos ◽  
Joana M. Silva ◽  
Nuno Sousa ◽  
...  

Historically, many investigations into neurodegenerative diseases have focused on alterations in specific neuronal populations such as, for example, the loss of midbrain dopaminergic neurons in Parkinson’s disease (PD) and loss of cholinergic transmission in Alzheimer’s disease (AD). However, it has become increasingly clear that mammalian brain activities, from executive and motor functioning to memory and emotional responses, are strictly regulated by the integrity of multiple interdependent neuronal circuits. Among subcortical structures, the dopaminergic nigrostriatal and mesolimbic pathways as well as cholinergic innervation from basal forebrain and brainstem, play pivotal roles in orchestrating cognitive and non-cognitive symptoms in PD and AD. Understanding the functional interactions of these circuits and the consequent neurological changes that occur during degeneration provides new opportunities to understand the fundamental inter-workings of the human brain as well as develop new potential treatments for patients with dysfunctional neuronal circuits. Here, excerpted from a session of the European Behavioral Pharmacology Society meeting (Braga, Portugal, August 2019), we provide an update on our recent work in behavioral and cellular neuroscience that primarily focuses on interactions between cholinergic and dopaminergic systems in PD models, as well as stress in AD. These brief discussions include descriptions of (1) striatal cholinergic interneurons (CINs) and PD, (2) dopaminergic and cholinergic modulation of impulse control, and (3) the use of an implantable cell-based system for drug delivery directly the into brain and (4) the mechanisms through which day life stress, a risk factor for AD, damage protein and RNA homeostasis leading to AD neuronal malfunction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Toni S. Pearson ◽  
Nalin Gupta ◽  
Waldy San Sebastian ◽  
Jill Imamura-Ching ◽  
Amy Viehoever ◽  
...  

AbstractAromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder characterized by deficient synthesis of dopamine and serotonin. It presents in early infancy, and causes severe developmental disability and lifelong motor, behavioral, and autonomic symptoms including oculogyric crises (OGC), sleep disorder, and mood disturbance. We investigated the safety and efficacy of delivery of a viral vector expressing AADC (AAV2-hAADC) to the midbrain in children with AADC deficiency (ClinicalTrials.gov Identifier NCT02852213). Seven (7) children, aged 4–9 years underwent convection-enhanced delivery (CED) of AAV2-hAADC to the bilateral substantia nigra (SN) and ventral tegmental area (VTA) (total infusion volume: 80 µL per hemisphere) in 2 dose cohorts: 1.3 × 1011 vg (n = 3), and 4.2 × 1011 vg (n = 4). Primary aims were to demonstrate the safety of the procedure and document biomarker evidence of restoration of brain AADC activity. Secondary aims were to assess clinical improvement in symptoms and motor function. Direct bilateral infusion of AAV2-hAADC was safe, well-tolerated and achieved target coverage of 98% and 70% of the SN and VTA, respectively. Dopamine metabolism was increased in all subjects and FDOPA uptake was enhanced within the midbrain and the striatum. OGC resolved completely in 6 of 7 subjects by Month 3 post-surgery. Twelve (12) months after surgery, 6/7 subjects gained normal head control and 4/7 could sit independently. At 18 months, 2 subjects could walk with 2-hand support. Both the primary and secondary endpoints of the study were met. Midbrain gene delivery in children with AADC deficiency is feasible and safe, and leads to clinical improvements in symptoms and motor function.


Sign in / Sign up

Export Citation Format

Share Document