neuro inflammation
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 179)

H-INDEX

27
(FIVE YEARS 8)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 242
Author(s):  
Chieh-Hsin Wu ◽  
Hung-Pei Tsai ◽  
Yu-Feng Su ◽  
Cheng-Yu Tsai ◽  
Ying-Yi Lu ◽  
...  

A subarachnoid hemorrhage (SAH), leading to severe disability and high fatality in survivors, is a devastating disease. Neuro-inflammation, a critical mechanism of cerebral vasospasm and brain injury from SAH, is tightly related to prognoses. Interestingly, studies indicate that 2-[(pyridine-2-ylmethyl)-amino]-phenol (2-PMAP) crosses the blood–brain barrier easily. Here, we investigated whether the vasodilatory and neuroprotective roles of 2-PMAP were observed in SAH rats. Rats were assigned to three groups: sham, SAH and SAH+2-PMAP. SAHs were induced by a cisterna magna injection. In the SAH+2-PMAP group, 5 mg/kg 2-PMAP was injected into the subarachnoid space before SAH induction. The administration of 2-PMAP markedly ameliorated cerebral vasospasm and decreased endothelial apoptosis 48 h after SAH. Meanwhile, 2-PMAP decreased the severity of neurological impairments and neuronal apoptosis after SAH. Furthermore, 2-PMAP decreased the activation of microglia and astrocytes, expressions of TLR-4 and p-NF-κB, inflammatory markers (TNF-α, IL-1β and IL-6) and reactive oxygen species. This study is the first to confirm that 2-PMAP has vasodilatory and neuroprotective effects in a rat model of SAH. Taken together, the experimental results indicate that 2-PMAP treatment attenuates neuro-inflammation, oxidative stress and cerebral vasospasm, in addition to ameliorating neurological deficits, and that these attenuating and ameliorating effects are conferred through the TLR-4/NF-κB pathway.


2022 ◽  
Author(s):  
Peramaiyan Rajendran ◽  
Rebai Ben Ammar ◽  
Fatma J Al-Saeedi ◽  
Saeed Y. AlRamadan ◽  
Mohammad Bani Ismail ◽  
...  

Abstract D-galactose (D-gal) is a reducing sugar drug can induce artificial senescence and aging process that mimic natural aging along with the accompanying brain and liver injury in experimental animals. Therefore, chronic D-gal administration is widely used to induce cognitive impairment, Alzheimer disease and aging in rodents' models. Aging is a phenomenon in which oxidative stress and apoptosis play a vital role. Geraniol (GNL) belongs to the acyclic isoprenoid monoterpenes, presents in essential oils such as those from Cinnamomum tenuipilum and Valeriana officinalis. In the present study, we examined the effects of GNL on D-gal-induced oxidative stress and neuro-inflammation mediated memory loss in mice. Analyzing the behavioral differences between control and treated groups, including the elderly mice, revealed that GNL significantly improved memory in mice treated with D-gal-induced memory loss (supplementary videos are provided). The anti-inflammatory and the anti-oxidative role of GNL were confirmed by both histopathological investigations and biochemical analyses. Mechanistically, GNL appears to activate PI3K/Akt and thus upregulates the nuclear factor erythroid 2-related factor 2 (Nrf2) and the heme oxygenase 1 (HO-1) to reduce the oxidative stress and apoptosis induced after D-gal treatment leading to easing of neurological deficits and cognitive dysfunction in D-gal-induced aging mouse models. Accordingly, our comprehensive behavioral analysis and bioassays suggest GNL as a promising agent preventing cognitive impairment and neurological deficits associated with aging.


Author(s):  
Maria Antonietta Barbieri ◽  
Gianluca Bagnato ◽  
Carmelo Ioppolo ◽  
Antonio Giovanni Versace ◽  
Natasha Irrera

Abstract: The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) represents a public health problem worldwide. COVID-19 triggers a maladaptive cytokine release commonly referred to as cytokine storm syndrome with increased production of pro-inflammatory cytokines, which also appears to contribute to chronic neuro-inflammation and neurodegenerative disorders’ appearance, including multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. In this context, SARS-CoV-2 might enter the central nervous system through binding with the angiotensin converting enzyme 2 receptors which are highly expressed in glial cells and neurons. For this reason, an association between COVID-19, its dependent cytokine storm, and the development and/or progression of neurodegenerative disorders might be evaluated. Therefore, the aim of this review was to assess the impact of COVID-19 on neurodegenerative disorders focusing on the possible increased mortality risk and/or deterioration of clinical course of pre-existing chronic neurological diseases in patients with dementia.


Author(s):  
Ashwani K. Dhingra ◽  
Bhawna Chopra ◽  
Akash Jain ◽  
Jasmine Chaudhary

Background: Alzheimer's disease (AD) is a multifactorial disorder coupled with an array of neuropathological mechanisms, including tau phosphorylation, Aβ aggregation, metal ion deregulation, and oxidative stress, along with neuro-inflammation. The clinically available drugs for the management of AD include four acetylcholinesterase inhibitors and one glutamatergic antagonist. These agents provide only temporary relief from the symptoms by altering the neurotransmitter level in the brain. Objective: Keeping in view the focus on research, the numerous pharmacological activities associated with the aromatic diazole heterocyclic nucleus, imidazole, triggered the medicinal chemist to develop a large number of novel anti-AD compounds targeting multiple pathological mechanisms associated with AD. These prepared analogs represent a higher potential against neurological disorders, including AD. This review article aims an ornately pronounce the therapeutic voyage of imidazole and its analogs as anti-AD. Method: It emphasizes the synthesized imidazole derivatives as anti–AD with multiple targets reviewed from the data available on Pubmed. Result: These compounds diminish the pathophysiological aspects of AD; still, further studies are required to prove the safety and efficacy of these compounds in humans. Conclusion: The review aims to provide knowledge and highlight the status of this moiety in the design and development of novel drug candidates against Alzheimer’s disease conditions. Thus, it paves the way for further work.


2022 ◽  
pp. 105275
Author(s):  
Fatemeh Kermanian ◽  
Masoumeh Seghatoleslam ◽  
Simin Mahakizadeh

2021 ◽  
Author(s):  
Hung-Chuan Pan ◽  
Cheng-Ning Yang ◽  
Wen-Jane Lee ◽  
Jason Sheehan ◽  
Sheng-Mao Wu ◽  
...  

Abstract Background: Activated microglia-mediated neuro-inflammation plays a vital aspect in regulating the micromilieu of the central nervous system. Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory (M1) phenotype and neuroprotective anti-inflammatory (M2) phenotype. Currently, there is no effective treatment for modulating such alterations. Little evidence shows that melatonin prevents the detrimental cascade of activated microglia-mediated neuro-inflammation. Methods: The expression levels of M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The neurobehavioral evaluations and immunofluorescence staining in animals were used for investigation of Melatonin on the neuroinflammation in vivo. Results: Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARd) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFkB–IKKb activation in primary microglia. The PPARd agonist L-165041 or over-expression of PPARd plasmid (ov-PPARd) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of melatonin showed that the activated site was located at PPARd (phospho-Thr256-PPARd). Furthermore, we found that activated microglia had lowered PPARd activity as well as the downstream SIRT1 formation via enhancing ER stress. Melatonin, PPARd agonist and ov-PPARd all effectively reversed the above-mentioned effects. Melatonin blocked ER stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, melatonin or L-165041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Conclusions Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER stress-dependent PPARd/SIRT1 signaling cascade. We proposed that this treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingsong Wang ◽  
Chunxia Lu ◽  
Lan Zheng ◽  
Jun Zhang

Methamphetamine (MA) induced addiction and neuroinflammation has been implicated. Based on the neuroinflammation hypothesis, this study aims to investigate how exercise influences the craving of patients in MA withdrawal, and explore the mechanism of peripheral inflammation. A total of 90 patients in MA withdrawal were recruited. No difference was noted in the number of years of drug use and the frequency of drug use among patients, and the withdrawal time was within 2 months. The subjects were grouped based on the degree of craving induced by the cues: non-craving control group (NCC group), craving control group (CC group), and craving exercise group (CE group). The CE group was subjected to aerobic combined resistance training. Then, the ELISA method was used to detect plasma IL-6, TNF-α, and IL-1β concentrations; Visual Analog Scale (VAS) measurement of cue-induced cravings under Virtual Reality (VR) exposure (VR-VAS) and the Desires for Drug Questionnaire (DDQ) were used to assess cravings. Consequently, plasma IL-6, TNF-α, IL-1β, levels, and the VR-VAS and DDQ scores of MA withdrawal patients were significantly reduced after exercise. This study confirmed that 8 weeks of incremental load aerobic combined with resistance training reduces peripheral inflammation and significantly reduces the level of craving for MA.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1298
Author(s):  
Hossam M. Abdallah ◽  
Nesrine S. El Sayed ◽  
Alaa Sirwi ◽  
Sabrin R. M. Ibrahim ◽  
Gamal A. Mohamed ◽  
...  

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is characterized by amyloid deposition and neurofibrillary tangles formation owing to tau protein hyperphosphorylation. Intra-cerebroventricular (ICV) administration of streptozotocin (STZ) has been widely used as a model of sporadic AD as it mimics many neuro-pathological changes witnessed in this form of AD. In the present study, mangostanaxanthone IV (MX-IV)-induced neuro-protective effects in the ICV-STZ mouse model were investigated. STZ (3 mg/kg, ICV) was injected once, followed by either MX-IV (30 mg/kg/day, oral) or donepezil (2.5 mg/kg/day, oral) for 21 days. Treatment with MX-IV diminished ICV-STZ-induced oxidative stress, neuro-inflammation, and apoptosis which was reflected by a significant reduction in malondialdehyde (MDA), hydrogen peroxide (H2O2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) brain contents contrary to increased glutathione (GSH) content. Moreover, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase content and cleaved caspase-3 activity were reduced together with a marked decrement in amyloid plaques number and phosphorylated tau expression via PI3K/Akt/GSK-3β pathway modulation, leading to obvious enhancement in neuronal survival and cognition. Therefore, MX-IV is deemed as a prosperous nominee for AD management with obvious neuro-protective effects that were comparable to the standard drug donepezil.


2021 ◽  
Vol 1 ◽  
pp. 102-109
Author(s):  
Bushra Hassan Marouf ◽  
Mayyadah Mahmood Ali

Oncologists considered platinum-based medicines as potent cytotoxic agents. Despite their efficacy in combination chemotherapy regimens for many solid tumors, they have many substantial side effects that limit their use. There is no known prophylactic strategy for platinum drugs-induced neurotoxicity, which limit a therapeutic dose benefit. This review highlights the etiology of platinum-drugs-induced neuropathy, and covers the preventative and therapeutic options for cancer patients. It focuses on clinical studies conducted between 2010 and 2020. Loss of functional indications such as touch, vibration and joint location, as well as diminished or missing deep tendon reflexes in the upper and lower limbs are all markers of neurotoxicity. These side effects may last for months or years after treatment, lower quality of life, and creating a substantial survivorship issue. DNA damage, oxidative stress, mitochondrial dysfunction, dysregulation of intracellular signaling, impairment of voltage gated ion channel function, and neuro-inflammation have all been proposed as mechanisms for chemotherapy-induced peripheral neuropathy (CIPN). There are no proven pharmaceutical or nutritional therapies to prevent CIPN. Several anti-CIPN medications have been investigated, but either had no effect or had an effect in a limited sample study. Supportive care medications such anti-epileptics and antidepressants are used to treat CIPN.


Author(s):  
Jasmini Alagaratnam ◽  
Alan Winston

Abstract People-with-HIV now have near-normal life expectancies due to the success of effective combination antiretroviral therapy (cART). Following cART initiation, immune recovery occurs, and opportunistic diseases become rare. Despite this, high rates of non-infectious comorbidities persist in treated people-with-HIV, hypothesised to be related to persistent immuno-activation. One such comorbidity is cognitive impairment, which may partly be driven by ongoing neuro-inflammation in otherwise effectively-treated people-with-HIV. In order to develop therapeutic interventions to address neuro-inflammation in effectively-treated people-with-HIV, a deeper understanding of the pathogenic mechanisms driving persistent neuro-inflammatory responses and the ability to better characterise and measure neuro-inflammation in the central nervous system is required. This review highlights recent advances in molecular neuroimaging techniques which have the potential to assess neuro-inflammatory responses within the central nervous system in HIV-disease. Proton magnetic resonance spectroscopy ( 1H-MRS) has been utilised to assess neuro-inflammatory responses since early in the HIV pandemic and shows promise in recent studies assessing different antiretroviral regimens. 1H-MRS is widely available in both resource-rich and some resource-constrained settings and is relatively inexpensive. Brain positron emission tomography (PET) imaging using Translocator Protein (TSPO) radioligands is a rapidly evolving field; newer TSPO-radioligands have lower signal-to-noise ratio and have the potential to localise neuro-inflammation within the brain in people-with-HIV. As HIV therapeutics evolve, people-with-HIV continue to age and develop age-related comorbidities including cognitive disorders. The use of novel neuroimaging modalities in the field is likely to advance in order to rapidly assess novel therapeutic interventions and may play a role in future clinical assessments.


Sign in / Sign up

Export Citation Format

Share Document