scholarly journals Molecular characterization and phylogenetic studies of a virulent newcastle disease virus detected in indigenous chickens in plateau state, Nigeria

2019 ◽  
Vol 1 (1) ◽  
pp. 027-034
Author(s):  
Peterside Rinle Kumbish ◽  
King Akpofure Nelson Esievo ◽  
James Saidu Ahmed ◽  
Tobias Pwajok Peter Choji ◽  
Gyang Davou Moses ◽  
...  
Virus Genes ◽  
2005 ◽  
Vol 31 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Andrey Bogoyavlenskiy ◽  
Vladimir Berezin ◽  
Alexey Prilipov ◽  
Eugeniy Usachev ◽  
Olga Lyapina ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 103
Author(s):  
Henry M. Kariithi ◽  
Helena L. Ferreira ◽  
Catharine N. Welch ◽  
Leonard O. Ateya ◽  
Auleria A. Apopo ◽  
...  

Kenyan poultry consists of ~80% free-range indigenous chickens kept in small flocks (~30 birds) on backyard poultry farms (BPFs) and they are traded via live bird markets (LBMs). Newcastle disease virus (NDV) was detected in samples collected from chickens, wild farm birds, and other domestic poultry species during a 2017–2018 survey conducted at 66 BPFs and 21 LBMs in nine Kenyan counties. NDV nucleic acids were detected by rRT-PCR L-test in 39.5% (641/1621) of 1621 analyzed samples, of which 9.67% (62/641) were NDV-positive by both the L-test and a fusion-test designed to identify the virulent virus, with a majority being at LBMs (64.5%; 40/62) compared to BPFs (25.5%; 22/62). Virus isolation and next-generation sequencing (NGS) on a subset of samples resulted in 32 complete NDV genome sequences with 95.8–100% nucleotide identities amongst themselves and 95.7-98.2% identity with other east African isolates from 2010-2016. These isolates were classified as a new sub-genotype, V.3, and shared 86.5–88.9% and 88.5–91.8% nucleotide identities with subgenotypes V.1 and V.2 viruses, respectively. The putative fusion protein cleavage site (113R-Q-K-R↓F 117) in all 32 isolates, and a 1.86 ICPI score of an isolate from a BPF chicken that had clinical signs consistent with Newcastle disease, confirmed the high virulence of the NDVs. Compared to genotypes V and VI viruses, the attachment (HN) protein of 18 of the 32 vNDVs had amino acid substitutions in the antigenic sites. A time-scaled phylogeographic analysis suggests a west-to-east dispersal of the NDVs via the live chicken trade, but the virus origins remain unconfirmed due to scarcity of continuous and systematic surveillance data. This study reveals the widespread prevalence of vNDVs in Kenyan backyard poultry, the central role of LBMs in the dispersal and possibly generation of new virus variants, and the need for robust molecular epidemiological surveillance in poultry and non-poultry avian species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liangxing Guo ◽  
Zhaokun Mu ◽  
Furong Nie ◽  
Xuanniu Chang ◽  
Haitao Duan ◽  
...  

AbstractNewcastle disease (ND), caused by virulent Newcastle disease virus (NDV), is a contagious viral disease affecting various birds and poultry worldwide. In this project, differentially expressed (DE) circRNAs, miRNAs and mRNAs were identified by high-throughput RNA sequencing (RNA-Seq) in chicken thymus at 24, 48, 72 or 96 h post LaSota NDV vaccine injection versus pre-inoculation group. The vital terms or pathways enriched by vaccine-influenced genes were tested through KEGG and GO analysis. DE genes implicated in innate immunity were preliminarily screened out through GO, InnateDB and Reactome Pathway databases. The interaction networks of DE innate immune genes were established by STRING website. Considering the high expression of gga-miR-6631-5p across all the four time points, DE circRNAs or mRNAs with the possibility to bind to gga-miR-6631-5p were screened out. Among DE genes that had the probability to interact with gga-miR-6631-5p, 7 genes were found to be related to innate immunity. Furthermore, gga-miR-6631-5p promoted LaSota NDV replication by targeting insulin induced gene 1 (INSIG1) in DF-1 chicken fibroblast cells. Taken together, our data provided the comprehensive information about molecular responses to NDV LaSota vaccine in Chinese Partridge Shank Chickens and elucidated the vital roles of gga-miR-6631-5p/INSIG1 axis in LaSota NDV replication.


2015 ◽  
Vol 82 (5) ◽  
pp. 1530-1536 ◽  
Author(s):  
Pingze Zhang ◽  
Guangyao Xie ◽  
Xinxin Liu ◽  
Lili Ai ◽  
Yanyu Chen ◽  
...  

ABSTRACTNewcastle disease (ND), caused by the virulent Newcastle disease virus (NDV), is one of the most important viral diseases of birds globally, but little is currently known regarding enzootic trends of NDV in northeastern China, especially for class I viruses. Thus, we performed a surveillance study for NDV in northeastern China from 2013 to 2015. A total 755 samples from wild and domestic birds in wetlands and live bird markets (LBMs) were collected, and 10 isolates of NDV were identified. Genetic and phylogenetic analyses showed that five isolates from LBMs belong to class I subgenotype 1b, two (one from wild birds and one from LBMs) belong to the vaccine-like class II genotype II, and three (all from wild birds) belong to class II subgenotype Ib. Interestingly, the five class I isolates had epidemiological connections with viruses from southern, eastern, and southeastern China. Our findings, together with recent prevalence trends of class I and virulent class II NDV in China, suggest possible virus transmission between wild and domestic birds and the potential for an NDV epidemic in the future.


2001 ◽  
Vol 82 (7) ◽  
pp. 1729-1736 ◽  
Author(s):  
Zhuhui Huang ◽  
Sateesh Krishnamurthy ◽  
Aruna Panda ◽  
Siba K. Samal

A previous report showed that insertion of a foreign gene encoding chloramphenicol acetyltransferase (CAT) between the HN and L genes of the full-length cDNA of a virulent Newcastle disease virus (NDV) yielded virus with growth retardation and attenuation. The NDV vector used in that study was pathogenic to chickens; it is therefore not suitable for use as a vaccine vector. In the present study, an avirulent NDV vector was generated and its potential to express CAT protein was evaluated. The CAT gene was under the control of NDV transcriptional start and stop signals and was inserted immediately before the open reading frame of the viral 3′-proximal nucleocapsid protein gene. A recombinant NDV expressing CAT activity at a high level was recovered. The replication and pathogenesis of the CAT-expressing recombinant NDV were not modified significantly. These results indicate the potential utility of an avirulent NDV as a vaccine vector.


Sign in / Sign up

Export Citation Format

Share Document