scholarly journals A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques

2021 ◽  
Vol 8 (3) ◽  
pp. 210-218
Author(s):  
Wulan Tri Wahyuni ◽  
Budi Riza Putra ◽  
Achmad Fauzi ◽  
Desi Ramadhanti ◽  
Eti Rohaeti ◽  
...  

Screen-printed carbon electrode (SPCE) is one of the most interesting designs to combine a working (from carbon based material), reference, and counter electrode in a single-printed substrate. SPCE has been used in many electrochemical measurements due to its advantages for analysis in microscale. This paper summarises the main information about SPCE fabrication from the material and fabrication technique aspect on the flat substrate based on the work that has been published in the last 30 years. The success of SPCE fabrication is highly dependent on the composition of conductive ink which consists of conductive materials, binder, and solvents; substrate; and fabrication techniques. Among the carbon-based materials, the most widely used for SPCE fabrications are graphite, graphene, and carbon nanotubes. The frequent binder used are polymer-based materials such as polystyrene, polyaniline, poly 3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS), and polyvinyl chloride. The solvents used for SPCE fabrication are varied including water and various organic solvents. The main characteristics of the SPCE substrate should be inert in order to avoid any interferences during electrochemical measurements. The screen printing and inkjet printing technique are preferred for SPCE fabrication due to easy fabrication and the possibility for mass production of SPCE.

2012 ◽  
Vol 571 ◽  
pp. 56-59
Author(s):  
Yu Fang Sha ◽  
Mei Zhao ◽  
Ming Quan Yang ◽  
Hai Xin Bai ◽  
Man Zhao

Biological multilayer films of redox polymer and horseradish peroxidase (HRP) were successfully assembled on a screen-printed carbon electrode using layer-by-layer (LBL) assembled method based on the electrostatic interaction. The screen-printed carbon electrode surface was modified by the positively charged redox polymer, and the negatively charged HRP by LBL method.


2021 ◽  
pp. 130574
Author(s):  
P.E. Resmi ◽  
Jeethu Raveendran ◽  
P.V. Suneesh ◽  
T. Ramanchandran ◽  
Bipin G Nair ◽  
...  

2017 ◽  
Vol 9 (24) ◽  
pp. 3689-3695 ◽  
Author(s):  
C. Karuwan ◽  
A. Wisitsoraat ◽  
P. Chaisuwan ◽  
D. Nacapricha ◽  
A. Tuantranont

This work presents a new method for mass fabrication of a new microfluidic device with integrated graphene-based electrochemical electrodes by the screen printing technique for in-channel amperometric detection.


2014 ◽  
Vol 447 ◽  
pp. 162-168 ◽  
Author(s):  
Nicolaj Cruys-Bagger ◽  
Hirosuke Tatsumi ◽  
Kim Borch ◽  
Peter Westh

Talanta ◽  
2012 ◽  
Vol 88 ◽  
pp. 432-438 ◽  
Author(s):  
Julien Biscay ◽  
Estefanía Costa Rama ◽  
María Begoña González García ◽  
A. Julio Reviejo ◽  
José Manuel Pingarrón Carrazón ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4324 ◽  
Author(s):  
Nurul Talib ◽  
Faridah Salam ◽  
Yusran Sulaiman

Clenbuterol (CLB) is an antibiotic and illegal growth promoter drug that has a long half-life and easily remains as residue and contaminates the animal-based food product that leads to various health problems. In this work, electrochemical immunosensor based on poly(3,4-ethylenedioxythiophene)/graphene oxide (PEDOT/GO) modified screen-printed carbon electrode (SPCE) for CLB detection was developed for antibiotic monitoring in a food product. The modification of SPCE with PEDOT/GO as a sensor platform was performed through electropolymerization, while the electrochemical assay was accomplished while using direct competitive format in which the free CLB and clenbuterol-horseradish peroxidase (CLB-HRP) in the solution will compete to form binding with the polyclonal anti-clenbuterol antibody (Ab) immobilized onto the modified electrode surface. A linear standard CLB calibration curve with R2 = 0.9619 and low limit of detection (0.196 ng mL−1) was reported. Analysis of milk samples indicated that this immunosensor was able to detect CLB in real samples and the results that were obtained were comparable with enzyme-linked immunosorbent assays (ELISA).


Sign in / Sign up

Export Citation Format

Share Document