scholarly journals Improving the security of LSB image steganography

Author(s):  
Jamil Al-Azzeh ◽  
Ziad Alqadi ◽  
Belal Ayyoub ◽  
Ahmad Sharadqh

Steganography is the technique of hiding secret data (message) within any media such as digital color image. In this paper we will merge steganography process with cryptography process in order to increase the security of the proposed method. The steganography process will based on LSB method, while the cryptography process will based on generating a huge private key and selecting a special function for encryption decryption. The proposed method will be implemented in order to calculate some performance parameters to prove the efficiency of the proposed method.

Author(s):  
Ahmed Toman Thahab

In modern public communication networks, digital data is massively transmitted through the internet with a high risk of data piracy. Steganography is a technique used to transmit data without arousing suspicion of secret data existence.  In this paper, a color image steganography technique is proposed in spatial domain. The cover image is segmented into non-overlapping blocks which are scattered among image size window using Burrows Wheeler transform before embedding. Secret data is embedded in each block according to its sequence in the Burrows Wheeler transform output. The hiding method is an operation of an exclusive-or between a virtual bit which is generated from the most significant bit and the least significant bits of the cover pixel. Results of the algorithm are analyzed according to its degradation of the output image and embedding capacity. The results are also compared with other existing methods.


2020 ◽  
Vol 8 (1) ◽  
pp. 95
Author(s):  
Yazen A. Khaleel

A new technique of hiding a speech signal clip inside a digital color image is proposed in this paper to improve steganography security and loading capacity. The suggested technique of image steganography is achieved using both spatial and cepstral domains, where the Mel-frequency cepstral coefficients (MFCCs) are adopted, as very efficient features of the speech signal. The presented technique in this paper contributes to improving the image steganography features through two approaches. First is to support the hiding capacity by the usage of the extracted MFCCs features and pitches extracted from the speech signal and embed them inside the cover color image rather than directly hiding the whole samples of the digitized speech signal. Second is to improve the data security by hiding the secret data (MFCCs features) anywhere in the host image rather than directly using the least significant bits substitution of the cover image. At the recovering side, the proposed approach recovers these hidden features and using them to reconstruct the speech waveform again by inverting the steps of MFCCs extraction to recover an approximated vocal tract response and combine it with recovered pitch based excitation signal. The results show a peak signal to noise ratio of 52.4 dB of the stego-image, which reflect a very good quality and a reduction ratio of embedded data to about (6%–25%). In addition, the results show a speech reconstruction degree of about 94.24% correlation with the original speech signal.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1389
Author(s):  
Jiwon Lee ◽  
Jihye Kim ◽  
Hyunok Oh

In public key broadcast encryption, anyone can securely transmit a message to a group of receivers such that privileged users can decrypt it. The three important parameters of the broadcast encryption scheme are the length of the ciphertext, the size of private/public key, and the performance of encryption/decryption. It is suggested to decrease them as much as possible; however, it turns out that decreasing one increases the other in most schemes. This paper proposes a new broadcast encryption scheme for tiny Internet of Things (IoT) equipment (BESTIE), minimizing the private key size in each user. In the proposed scheme, the private key size is O(logn), the public key size is O(logn), the encryption time per subset is O(logn), the decryption time is O(logn), and the ciphertext text size is O(r), where n denotes the maximum number of users, and r indicates the number of revoked users. The proposed scheme is the first subset difference-based broadcast encryption scheme to reduce the private key size O(logn) without sacrificing the other parameters. We prove that our proposed scheme is secure under q-Simplified Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) in the standard model.


2018 ◽  
Vol 18 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Aditya Kumar Sahu ◽  
Gandharba Swain ◽  
E. Suresh Babu

Abstract This article proposes bit flipping method to conceal secret data in the original image. Here a block consists of 2 pixels and thereby flipping one or two LSBs of the pixels to hide secret information in it. It exists in two variants. Variant-1 and Variant-2 both use 7th and 8th bit of a pixel to conceal the secret data. Variant-1 hides 3 bits per a pair of pixels and the Variant-2 hides 4 bits per a pair of pixels. Our proposed method notably raises the capacity as well as bits per pixel that can be hidden in the image compared to existing bit flipping method. The image steganographic parameters such as, Peak Signal to Noise Ratio (PSNR), hiding capacity, and the Quality Index (Q.I) of the proposed techniques has been compared with the results of the existing bit flipping technique and some of the state of art article.


Sign in / Sign up

Export Citation Format

Share Document