Evaluation of Lossy Compressed Mosaic for SPOT-6/7 Remote Sensing Data in SPACeMAP

2021 ◽  
Vol 5 (3) ◽  
pp. 271
Author(s):  
Agnes S Payani ◽  
Siti D Wahyuningsih ◽  
Gusti D Yudha ◽  
Nico Cendiana ◽  
Hanna Afida ◽  
...  

SPACeMAP is a remote-sensing data portal system owned by LAPAN used to distribute mosaic data of Medium-Resolution to Very-High-Resolution for Provincial Governments. The frequently arising problem is that mosaic images have very large data size, especially for SPOT-6/7 mosaic images. The increasing number of data and users may affect the data loading process on the portal so that mosaic data compression can be considered. SPACeMAP has the Image Compressor feature using the Tile and Line algorithms with a compression ratio (target rate) recommended for optics (15 to 20). This study aims to determine the best algorithm and target rate to get compressed mosaic SPOT-6/7 imagery. The comparison method was done qualitatively through visual comparison and quantitatively by using Compression Ratio (CR), Bit per Pixel (BPP), and Peak Signal to Noise Ratio (PSNR).  Results of the experiment show that, quantitatively, both Tile and Line algorithms give a different performance, depends on the zoom level and land cover characteristics. In terms of the qualitative result, the Tile algorithm gives better overall results compare to the Line algorithm. Quantitatively, both algorithms show good performance in the homogenous area. The target rate difference on the testing range does not affect process duration, nevertheless, the Line algorithm has a long process duration compare to the Tile algorithm. However, compression mosaics with lower or higher resolution remote sensing data may provide different results. Hence, this need be addressed on further studies.

Author(s):  
Ratih Dewanti Dimyati ◽  
Projo Danoedoro ◽  
Hartono Hartono ◽  
Kustiyo Kustiyo

<p>The need for remote sensing minimum cloud cover or cloud free mosaic images is now increasing in line with the increased of national development activities based on one map policy. However, the continuity and availability of cloud and haze free remote sensing data for the purpose of monitoring the natural resources are still low. This paper presents a model of medium resolution remote sensing data processing of Landsat-8 uses a new approach called mosaic tile based model (MTB), which is developed from the mosaic pixel based model (MPB) algorithm, to obtain an annual multitemporal mosaic image with minimum cloud cover mosaic imageries. The MTB model is an approach constructed from a set of pixels (called tiles) considering the image quality that is extracted from cloud and haze free areas, vegetation coverage, and open land coverage of multitemporal imageries. The data used in the model are from Landsat-8 Operational Land Imager (OLI) covering 10 scenes area, with 2.5 years recording period from June 2015 to June 2017; covered Riau, West Sumatra and North Sumatra Provinces. The MTB model is examined with tile size of 0.1 degrees (11x11 km2), 0.05 degrees (5.5x5.5 km2), and 0.02 degrees (2.2x2.2 km2). The result of the analysis shows that the smallest tile size 0.02 gives the best result in terms of minimum cloud cover and haze (or named clear area). The comparison of clear area values to cloud cover and haze for three years (2015, 2016 and 2017) for the three mosaic images of MTB are 68.2%, 78.8%, and 86.4%, respectively.</p>


2016 ◽  
Vol 75 (14) ◽  
pp. 1255-1269 ◽  
Author(s):  
R.A. Kozhemiakin ◽  
V. V. Lukin ◽  
S. K. Abramov ◽  
M. Simeunovic ◽  
B. Djurovic ◽  
...  

DYNA ◽  
2015 ◽  
Vol 82 (190) ◽  
pp. 166-172 ◽  
Author(s):  
Assiya Sarinova ◽  
Alexander Zamyatin ◽  
Pedro Cabral

This paper considers an approach to the compression of hyperspectral remote sensing data by an original multistage algorithm to increase the compression ratio using auxiliary data processing with its byte representation as well as with its intra-bands correlation. A set of the experimental results for the proposed approach of effectiveness estimation and its comparison with the well-known universal and specialized compression algorithms is presented.


2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

2004 ◽  
Vol 10 (5-6) ◽  
pp. 175-177
Author(s):  
S.L. Kravtsov ◽  
◽  
L.V. Oreshkina ◽  

2011 ◽  
Vol 17 (6) ◽  
pp. 30-44
Author(s):  
Yu.V. Kostyuchenko ◽  
◽  
M.V. Yushchenko ◽  
I.M. Kopachevskyi ◽  
S. Levynsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document