RATES OF SURFACE FIRE SPREAD IN A YOUNG CALABRIAN PINE (Pinus brutia Ten.) PLANTATION

2012 ◽  
Vol 11 (8) ◽  
pp. 1475-1480 ◽  
Author(s):  
Omer Kucuk ◽  
Ertugrul Bilgili ◽  
Serkan Bulut ◽  
Paulo M. Fernandes
2018 ◽  
Author(s):  
Hang Yin ◽  
Hui Jin ◽  
Ying Zhao ◽  
Yuguang Fan ◽  
Liwu Qin ◽  
...  

2008 ◽  
Vol 38 (2) ◽  
pp. 190-201 ◽  
Author(s):  
Paulo M. Fernandes ◽  
Hermínio Botelho ◽  
Francisco Rego ◽  
Carlos Loureiro

Thresholds for surface fire spread were examined in maritime pine ( Pinus pinaster Ait.) stands in northern Portugal. Fire sustainability was assessed after ignition of 2 m fire lines or in larger burns conducted in 10–15 m wide plots. The experiments were carried out from November to June in three fuel types: litter, litter plus shrubs, and litter with a nonwoody understorey. Moisture content of fine dead fuels, on-site weather variables, and descriptors of the fuel complex all had a highly significant influence on the probability of self-sustaining fire spread. A logistic model based solely on fuel moisture content correctly classified the fire sustainability status of 88% of the observations. Nonetheless, the subjectivity of the moisture of extinction concept was apparent, and further accuracy was achieved by the consecutive addition of fire spread direction (forward or backward), fuel type, and ambient temperature. Fully sustained fire spread, in opposition to marginal burns with broken fire fronts, was similarly dependent on fuel moisture but was affected also by fire spread direction and time since rain. The models can benefit fire research and fire management operations but can be made more practical if integrated in a fire danger rating system.


2007 ◽  
Vol 83 (4) ◽  
pp. 275-283 ◽  
Author(s):  
Soung-Ryoul Ryu ◽  
Jiquan Chen ◽  
Daolan Zheng ◽  
Jacob J. Lacroix

2007 ◽  
Vol 16 (4) ◽  
pp. 503 ◽  
Author(s):  
W. Matt Jolly

Fire behaviour models are used to assess the potential characteristics of wildland fires such as rates of spread, fireline intensity and flame length. These calculations help support fire management strategies while keeping fireline personnel safe. Live fuel moisture is an important component of fire behaviour models but the sensitivity of existing models to live fuel moisture has not been thoroughly evaluated. The Rothermel surface fire spread model was used to estimate key surface fire behaviour values over a range of live fuel moistures for all 53 standard fuel models. Fire behaviour characteristics are shown to be highly sensitive to live fuel moisture but the response is fuel model dependent. In many cases, small changes in live fuel moisture elicit drastic changes in predicted fire behaviour. These large changes are a result of a combination of the model-calculated live fuel moisture of extinction, the effective wind speed limit and the dynamic load transfer function of some of the fuel models tested. Surface fire spread model sensitivity to live fuel moisture changes is discussed in the context of predicted fire fighter safety zone area because the area of a predicted safety zone may increase by an order of magnitude for a 10% decrease in live fuel moisture depending on the fuel model chosen.


2009 ◽  
Vol 23 (4) ◽  
pp. 1797-1800 ◽  
Author(s):  
Ertugrul Bilgili ◽  
Omer Kucuk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document