scholarly journals Analisis Error dan Epoch dengan Pengembangan Adaptive Learning Rate dan Parameter Momentum pada Metode Backpropagation

2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Zahratul Fitri

Abstrak— Algoritma backpropagation merupakan bagian dari Jaringan Syaraf Tiruan (JST) yang memiliki beberapa layar tersembunyi. Algoritma backpropagation juga merupakan multi-layer yang banyak digunakan untuk menyelesaikan persoalan yang luas, akan tetapi, algoritma backpropagation juga memiliki kelamahan pada proses pembelajaran yang cukup lambat. Pada penelitian ini penulis menganalisis bagaimana mengembangkan algoritma backpropagation dengan menggunakan learning rate dan parameter momentum untuk meminimalisir error dan epoch yang akurat sebagai proses menghitung perubahan bobot. Dari hasil penelitian diperoleh bahwa pengembangan yang dilakukan memperoleh nilai paling baik pada nilai momentum yaitu 0,9 dan 1.0 dan nilai learning rate yaitu > 0,7. Hal ini membuktikan bahwa nilai pembelajaran dengan menggunakan nilai parameter momentum dan nilai learning rate diatas sangat baik digunakan sebagai percepatan laju konvergensi.Kata kunci— Algoritma Backpropagation, Parameter Momentum, Adaptive Learning Rate . Abstract— Backpropagation algorithm is part of an Artificial Neural Network (ANN), which has some hidden screen. Backpropagation algorithm is also a multi-layer finish that is widely used for large problems, however, the backpropagation algorithm also has weaknesses in the learning process is quite slow. In this study the authors analyze how to develop a backpropagation algorithm using learning rate and momentum parameters to minimize the error and accurate epoch as the process of calculating the weight change. The result showed that the development is carried out to obtain best value on the momentum value of 0.9 and 1.0 and the value of learning rate is> 0.7. It is proved that the value of learning by using the parameter values of momentum and learning rate values above are best used as a convergence rate acceleration.Keywords— Backpropagation Algorithm, Parameter of Momentum, Adaptive   Learning Rate

Author(s):  
Mr. Dhanaji Vilas Mirajkar

Artificial neural network (ANN) mainly consists of learning algorithms, which are require to optimize the convergence of neural networks. We need to optimize the convergence of neural networks in order to improve the speed and accuracy of decision making process. To enable the optimization process one of the widely used algorithm is back propagation learning algorithm. Objective of study is to applied backpropagation algorithm for solving multivariate time series problem. To better the accuracy of neural network it is important to find optimized architecture for the problem under consideration. The learning rate is also an important factor which affects the performance of result. In this study, we proposed extended adaptive learning approach in which learning rate is adapted from number of previous iteration error trend in first half of training. In next half of training learning rate is adapted as per adaptive learning rate algorithm. Compare performance of three variation of backpropagationalgorithm. All these variation experimented on two standard dataset. Experimental result shows that during validation and training ANN with extended adaptive learning rate outperforms other than two variations.


Author(s):  
Afan Galih Salman ◽  
Yen Lina Prasetio

The use of technology of technology Artificial Neural Network (ANN) in prediction of rainfall can be done using the learning approach. ANN prediction accuracy measured by the coefficient of determination (R2) and Root Mean Square Error (RMSE).This research employ a recurrent optimized heuristic Artificial Neural Network (ANN) Recurrent Elman gradient descent adaptive learning rate approach using El-Nino Southern Oscilation (ENSO) variable, namely Wind, Southern Oscillation Index (SOI), Sea Surface Temperatur (SST) dan Outgoing Long Wave Radiation (OLR) to forecast regional monthly rainfall. The patterns of input data affect the performance of Recurrent Elman neural network in estimation process. The first data group that is 75% training data and 25% testing data produce the maximum R2 69.2% at leap 0 while the second data group that is 50% training data & 50% testing data produce the maximum R2 53.6%.at leap 0 Our result on leap 0 is better than leap 1,2 or 3. 


2018 ◽  
Vol 101 ◽  
pp. 68-78 ◽  
Author(s):  
Tomoumi Takase ◽  
Satoshi Oyama ◽  
Masahito Kurihara

2019 ◽  
Vol 32 (12) ◽  
pp. 8691-8710 ◽  
Author(s):  
A. Aziz Khater ◽  
Ahmad M. El-Nagar ◽  
Mohammad El-Bardini ◽  
Nabila M. El-Rabaie

Author(s):  
Asyrofa Rahmi ◽  
Vivi Nur Wijayaningrum ◽  
Wayan Firdaus Mahmudy ◽  
Andi Maulidinnawati A. K. Parewe

The signature recognition is a difficult process as it requires several phases. A failure in a phase will significantly reduce the recognition accuracy. Artificial Neural Network (ANN) believed to be used to assist in the recognition or classification of the signature. In this study, the ANN algorithm used is Back Propagation. A mechanism to adaptively adjust the learning rate is developed to improve the system accuracy. The purpose of this study is to conduct the recognition of a number of signatures so that can be known whether the recognition which is done by using the Back Propagation is appropriate or not. The testing results performed by using learning rate of 0.64, the number of iterations is 100, and produces an accuracy value of 63%.


Sign in / Sign up

Export Citation Format

Share Document